CLRM: Basic Assumptions

1. Specification:
 - Relationship between X and Y in the population is linear:
 \[E(Y) = X\beta \]
 - No extraneous variables in X
 - No omitted independent variables
 - Parameters (β) are constant

2. $E(\epsilon) = 0$

3. Error terms:
 - $\text{Var}(\epsilon) = \sigma^2$, or homoskedastic errors
 - $E(r_{\epsilon_i, \epsilon_j}) = 0$, or no auto-correlation
4. X is non-stochastic, meaning observations on independent variables are fixed in repeated samples
 - implies no *measurement error* in X
 - implies no serial correlation where a lagged value of Y would be used an independent variable
 - no *simultaneity or endogenous* X variables

5. $N > k$, or number of observations is greater than number of independent variables (in matrix terms: $\text{rank}(X) = k$), and no exact linear relationships exist in X

6. Normally distributed errors: $\epsilon \mid X \sim N(0, \sigma^2)$. Technically however this is a *convenience* rather than a strict assumption
Ordinary Least Squares (OLS)

Objective: minimize \(\sum e_i^2 = \sum (Y_i - \hat{Y}_i)^2 \), where

\[
\hat{Y}_i = b_0 + b_1 X_i
\]

error \(e_i = (Y_i - \hat{Y}_i) \)

\[
b = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})} = \frac{\sum X_i Y_i}{\sum X_i^2}
\]

The intercept is: \(b_0 = \bar{Y} - b_1 \bar{X} \)
OLS rationale

- Formulas are very simple
- Closely related to ANOVA (sums of squares decomposition)
- Predicted Y is sample mean when $\Pr(Y|X) = \Pr(Y)$
 - In the special case where Y has no relation to X, $b_1 = 0$, then OLS fit is simply $\hat{Y} = b_0$
 - Why? Because $b_0 = \bar{Y} - b_1 \bar{X}$, so $\hat{Y} = \bar{Y}$
 - Prediction is then sample mean when X is unrelated to Y

- Since OLS is then an extension of the sample mean, it has the same attractive properties (efficiency and lack of bias)
- Alternatives exist but OLS has generally the best properties when assumptions are met
OLS in matrix notation

- Formula for coefficient β:

\[
\begin{align*}
Y &= X\beta + \epsilon \\
X'Y &= X'X\beta + X'\epsilon \\
X'Y &= X'X\beta + 0 \\
(X'X)^{-1}X'Y &= \beta + 0 \\
\beta &= (X'X)^{-1}X'Y
\end{align*}
\]

- Formula for variance-covariance matrix: $\sigma^2(X'X)^{-1}$

- In simple case where $y = \beta_0 + \beta_1 * x$, this gives $\sigma^2 / \sum(x_i - \bar{x})^2$ for the variance of β_1

- Note how increasing the variation in X will reduce the variance of β_1
The “hat” matrix

- The hat matrix H is defined as:

$$\hat{\beta} = (X'X)^{-1}X'y$$
$$X\hat{\beta} = X(X'X)^{-1}X'y$$
$$\hat{y} = Hy$$

- $H = X(X'X)^{-1}X'$ is called the hat-matrix

- Other important quantities, such as \hat{y}, $\sum e_i^2$ (RSS) can be expressed as functions of H

- Corrections for heteroskedastic errors (“robust” standard errors) involve manipulating H
Sums of squares (ANOVA)

\[\text{SST} \quad \text{Total sum of squares} \quad \sum (y_i - \bar{y})^2 \]

\[\text{SSR} \quad \text{Regression sum of squares} \quad \sum (\hat{y}_i - \bar{y})^2 \]

\[\text{SSE} \quad \text{Error sum of squares} \quad \sum e_i^2 = \sum (\hat{y}_i - y_i)^2 \]

The key to remember is that \(\text{SST} = \text{SSR} + \text{SSE} \)
\(R^2 \)

- A much over-used statistic: it may not be what we are interested in at all
- Interpretation: the proportion of the variation in \(y \) that is explained linearly by the independent variables
- Defined in terms of sums of squares:

\[
R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} = 1 - \frac{\sum(y_i - \hat{y}_i)^2}{\sum(y_i - \bar{y})^2}
\]

- Alternatively, \(R^2 \) is the squared correlation coefficient between \(y \) and \(\hat{y} \)
When a model has no intercept, it is possible for R^2 to lie outside the interval $(0, 1)$

R^2 rises with the addition of more explanatory variables. For this reason we often report “adjusted R^2”:

$$1 - (1 - R^2) \frac{n-1}{n-k-1}$$

where k is the total number of regressors in the linear model (excluding the constant)

Whether R^2 is high or not depends a lot on the overall variance in Y

To R^2 values from different Y samples cannot be compared
R^2 continued

$$R^2 = \frac{\Sigma (\hat{y}_i - \bar{y})^2}{\Sigma (y_i - \bar{y})^2}$$

- Solid arrow: variation in y when X is unknown (SSR)
- Dashed arrow: variation in y when X is known (SST)
R^2 decomposed

\[
y = \hat{y} + \epsilon
\]
\[
\text{Var}(y) = \text{Var}(\hat{y}) + \text{Var}(e) + 2\text{Cov}(\hat{y}, e)
\]
\[
\text{Var}(y) = \text{Var}(\hat{y}) + \text{Var}(e) + 0
\]
\[
\sum (y_i - \bar{y})^2 / N = \sum (\hat{y}_i - \bar{y})^2 / N + \sum (e_i - \hat{e})^2 / N
\]
\[
\sum (y_i - \bar{y})^2 = \sum (\hat{y}_i - \bar{y})^2 + \sum (e_i - \hat{e})^2
\]
\[
\sum (y_i - \bar{y})^2 = \sum (\hat{y}_i - \bar{y})^2 + \sum e_i^2
\]
\[
SST = SSR + SSE
\]
\[
SST / SST = SSR / SST + SSE / SST
\]
\[
1 = R^2 + \text{unexplained variance}
\]
Regression “terminology”

- y is the dependent variable
 - referred to also (by Greene) as a regressand

- X are the independent variables
 - also known as explanatory variables
 - also known as regressors

- y is regressed on X

- The error term ϵ is sometimes called a disturbance
Some important OLS properties to understand

Applies to $y = \alpha + \beta x + \epsilon$

- If $\beta = 0$ and the only regressor is the intercept, then this is the same as regressing y on a column of ones, and hence $\alpha = \bar{y}$ — the mean of the observations
- If $\alpha = 0$ so that there is no intercept and one explanatory variable x, then $\beta = \frac{\sum xy}{\sum x^2}$
- If there is an intercept and one explanatory variable, then

$$
\beta = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}
= \frac{\sum_i (x_i - \bar{x})y_i}{\sum (x_i - \bar{x})^2}
$$
If the observations are expressed as deviations from their means, \(y^* = y - \bar{y} \) and \(x^* = x - \bar{x} \), then \(\beta = \frac{\sum x^* y^*}{\sum x^*^2} \).

The intercept can be estimated as \(\bar{y} - \beta \bar{x} \). This implies that the intercept is estimated by the value that causes the sum of the OLS residuals to equal zero.

The mean of the \(\hat{y} \) values equals the mean \(y \) values – together with previous properties, implies that the OLS regression line passes through the overall mean of the data points.
Normally distributed errors

\[E(y|x) \]

\[E(y|x = x_2) \]

\[E(y|x = x_1) \]

\[E(y|x = x_0) \]

\[\alpha + \beta x \]

\[N(\alpha + \beta x_2, \sigma^2) \]

Figure 2.2 The Classical Regression Model.
```r
> dail <- read.dta("dail2002.dta")
> mdl <- lm(votes1st ~ spend_total*incumb + minister, data=dail)
> summary(mdl)

Call:
  lm(formula = votes1st ~ spend_total * incumb + minister, data = dail)

Residuals:
     Min       1Q   Median       3Q      Max
-5555.8  -979.2  -262.4   877.2  6816.5

Coefficients:  Estimate  Std. Error t value Pr(>|t|)
(Intercept)  469.37438   161.54635   2.906  0.00384 **
spend_total  0.20336     0.01148   17.713  < 2e-16 ***
incumb       5150.75818   536.36856   9.603  < 2e-16 ***
minister     1260.00137   474.96610   2.653  0.00826 **
spend_total:incumb -0.14904    0.02746  -5.428  9.28e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1796 on 457 degrees of freedom
(2 observations deleted due to missingness)
Multiple R-squared: 0.6672, Adjusted R-squared: 0.6643
F-statistic: 229 on 4 and 457 DF,  p-value: < 2.2e-16
```
. use dail2002
(Ireland 2002 Dail Election - Candidate Spending Data)

. gen spendXinc = spend_total * incumb
(2 missing values generated)

. reg votes1st spend_total incumb minister spendXinc

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 462</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2.9549e+09</td>
<td>4</td>
<td>738728297</td>
<td>F(4, 457) = 229.05</td>
</tr>
<tr>
<td>Residual</td>
<td>1.4739e+09</td>
<td>457</td>
<td>3225201.58</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>4.4288e+09</td>
<td>461</td>
<td>9607007.17</td>
<td>R-squared = 0.6672</td>
</tr>
</tbody>
</table>

| votes1st | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|----------|--------|-----------|------|-----|----------------------|
| spend_total | .2033637 | .0114807 | 17.71| 0.000 | .1808021 .2259252 |
| incumb | 5150.758 | 536.3686 | 9.60 | 0.000 | 4096.704 6204.813 |
| minister | 1260.001 | 474.9661 | 2.65 | 0.008 | 326.613 2193.39 |
| spendXinc | -.1490399 | .0274584 | -5.43| 0.000 | -.2030003 -.0950794 |
| _cons | 469.3744 | 161.5464 | 2.91 | 0.004 | 151.9086 786.8402 |
Examining the sums of squares

> yhat <- mdl$fitted.values # uses the lm object mdl from previous
> ybar <- mean(mdl$model[,1])
> y <- mdl$model[,1] # can't use dail$votes1st since diff N
> SST <- sum((y-ybar)^2)
> SSR <- sum((yhat-ybar)^2)
> SSE <- sum((yhat-y)^2)
> SSE
[1] 1473917120
> sum(mdl$residuals^2)
[1] 1473917120
> (r2 <- SSR/SST)
[1] 0.6671995
> (adjr2 <- (1 - (1-r2)*(462-1)/(462-4-1)))
[1] 0.6642865
> summary(mdl)$r.squared # note the call to summary()
[1] 0.6671995
> SSE/457
[1] 3225202
> sqrt(SSE/457)
[1] 1795.885
> summary(mdl)$sigma
[1] 1795.885