Day 4: Quantitative methods for comparing texts

Kenneth Benoit

Essex Summer School 2014

July 24, 2013
Documents as vectors

- The idea is that (weighted) features form a vector for each document, and that these vectors can be judged using metrics of similarity.
- A document’s vector for us is simply (for us) the row of the document-feature matrix.
Characteristics of similarity measures

Let A and B be any two documents in a set and $d(A, B)$ be the distance between A and B.

1. $d(x, y) \geq 0$ (the distance between any two points must be non-negative)
2. $d(A, B) = 0$ iff $A = B$ (the distance between two documents must be zero if and only if the two objects are identical)
3. $d(A, B) = d(B, A)$ (distance must be symmetric: A to B is the same distance as from B to A)
4. $d(A, C) \leq d(A, B) + d(B, C)$ (the measure must satisfy the triangle inequality)
Euclidean distance

Between document A and B where j indexes their features, where y_{ij} is the value for feature j of document i

- Euclidean distance is based on the Pythagorean theorem
- Formula

$$
\sqrt{\sum_{i=1}^{j} (y_{Aj} - y_{Bj})^2} \quad (1)
$$

- In vector notation:

$$
\|y_A - y_B\| \quad (2)
$$

- Can be performed for any number of features J (or V as the vocabulary size is sometimes called – the number of columns in of the dfm, same as the number of feature types in the corpus)
Remember Mr. Cosine?

In a right angled triangle, the cosine of an angle θ or $\cos(\theta)$ is the length of the adjacent side divided by the length of the hypotenuse.

We can use the vectors to represent the text location in a V-dimensional vector space and compute the angles between them.
Cosine similarity

- Cosine distance is based on the size of the angle between the vectors.

- Formula

\[
\frac{\mathbf{y}_A \cdot \mathbf{y}_B}{\|\mathbf{y}_A\| \|\mathbf{y}_B\|}
\]

(3)

- The \(\cdot \) operator is the inner product, or \(\sum_j y_{Aj} y_{Bj} \).

- The \(\|\mathbf{y}_A\| \) is the vector norm of the (vector of) features vector \(\mathbf{y} \) for document \(A \), such that

\[
\|\mathbf{y}_A\| = \sqrt{\sum_j y_{Aj}^2}
\]

- Nice property: independent of document length, because it deals only with the angle of the vectors.

- Ranges from -1.0 to 1.0 for term frequencies, or 0 to 1.0 for normalized term frequencies (or tf-idf).
Cosine similarity illustrated

Similar scores
Score Vectors in same direction
Angle between them is near 0 deg.
Cosine of angle is near 1 i.e. 100%

Unrelated scores
Score Vectors are nearly orthogonal
Angle between them is near 90 deg.
Cosine of angle is near 0 i.e. 0%

Opposite scores
Score Vectors in opposite direction
Angle between them is near 180 deg.
Cosine of angle is near -1 i.e. -100%
Hurricane Gilbert swept toward the Dominican Republic Sunday, and the Civil Defense alerted its heavily populated south coast to prepare for high winds, heavy rains and high seas.

The storm was approaching from the southeast with sustained winds of 75 mph gusting to 92 mph.

“There is no need for alarm,” Civil Defense Director Eugenio Cabral said in a television alert shortly before midnight Saturday.

Cabral said residents of the province of Barahona should closely follow Gilbert's movement.

An estimated 100,000 people live in the province, including 70,000 in the city of Barahona, about 125 miles west of Santo Domingo.

Tropical Storm Gilbert formed in the eastern Caribbean and strengthened into a hurricane Saturday night.

The National Hurricane Center in Miami reported its position at 2 a.m. Sunday at latitude 16.1 north, longitude 67.5 west, about 140 miles south of Ponce, Puerto Rico, and 200 miles southeast of Santo Domingo.

The National Weather Service in San Juan, Puerto Rico, said Gilbert was moving westward at 15 mph with a "broad area of cloudiness and heavy weather" rotating around the center of the storm.

The weather service issued a flash flood watch for Puerto Rico and the Virgin Islands until at least 6 p.m. Sunday.

Strong winds associated with the Gilbert brought coastal flooding, strong southeast winds and up to 12 feet to Puerto Rico's south coast.
Example text: selected terms

- **Document 1**
 Gilbert: 3, hurricane: 2, rains: 1, storm: 2, winds: 2

- **Document 2**
 Gilbert: 2, hurricane: 1, rains: 0, storm: 1, winds: 2
Example text: cosine similarity in R

```r
> toyDfm <- matrix(c(3,2,1,2,2, 2,1,0,1,2), nrow=2, byrow=TRUE)
> colnames(toyDfm) <- c("Gilbert", "hurricane", "rain", "storm", "winds")
> rownames(toyDfm) <- c("doc1", "doc2")
> toyDfm
    Gilbert hurricane rain storm winds
doc1     3       2   1   2   2
doc2     2       1   0   1   2
> simil(toyDfm, "cosine")
     doc1
doc2 0.9438798
```
The former measures the similarity of vectors with respect to the origin, while the latter measures the distance between particular points of interest along the vector.
Relationship to Euclidean distance

- Cosine similarity measures the similarity of vectors with respect to the origin.
- Euclidean distance measures the distance between particular points of interest along the vector.
Relationship to Euclidean distance

- Euclidean distance is $\|y_A - y_B\|
- \cos(A, B) = \frac{y_A \cdot y_B}{\|y_A\| \|y_B\|}$

If A and B are normalized to unit length (term proportions instead of frequencies), such that $\|A\|^2 = \|B\|^2 = 1$, then

$$\|y_A - y_B\|^2 = (A - B)'(A - B)$$
$$= \|A\|^2 + \|B\|^2 - 2 A'B$$
$$= 2(1 - \cos(A, B))$$

where $(1 - \cos(A, B))$ is the complement of the cosine similarity, also known as cosine distance

so the Euclidean distance is twice the cosine distance for normalized term vectors
Jacquard coefficient

- Similar to the Cosine similarity
- Formula

\[
\frac{y_A \cdot y_B}{\|y_A\| + \|y_B\| - y_A \cdot y_B} \quad (4)
\]

- Ranges from 0 to 1.0
- The \(\times \) operator is a ????
Can be made very general for binary features

Example: In the Choi et al paper, they compare vectors of features for (binary) absence or presence – called (“operational taxonomic units”)

Table 1 OTUs Expression of Binary Instances i and j

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>j</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$a = i \cdot j$</td>
<td>$b = \bar{i} \cdot j$</td>
<td>$a+b$</td>
</tr>
<tr>
<td>0</td>
<td>$c = i \cdot \bar{j}$</td>
<td>$d = \bar{i} \cdot \bar{j}$</td>
<td>$c+d$</td>
</tr>
<tr>
<td>Sum</td>
<td>$a+c$</td>
<td>$b+d$</td>
<td>$n=a+b+c+d$</td>
</tr>
</tbody>
</table>

- Cosine similarity:

\[
s_{\text{cosine}} = \frac{a}{\sqrt{(a + b)(a + c)}}
\]

(5)

- Jaccard similarity:

\[
s_{\text{Jaccard}} = \frac{a}{\sqrt{(a + b + c)}}
\]

(6)
Typical features

- Normalized term frequency (almost certainly)
- Very common to use tf-idf – if not, similarity is boosted by common words (stop words)
- Not as common to use binary features
Uses for similarity measures: Clustering
Other used for similarity measures

- Used extensively in information retrieval
- Summary measures of how far apart two texts are – but be careful exactly how you define “features”
- Some but not many applications in social sciences to measure substantive similarity — scaling models are generally preferred
Edit distances

- Edit distance refers to the number of operations required to transform one string into another.
- Common edit distance: the Levenshtein distance.
- Example: the Levenshtein distance between "kitten" and "sitting" is 3.
 - kitten \rightarrow sitten (substitution of "s" for "k")
 - sitten \rightarrow sittin (substitution of "i" for "e")
 - sittin \rightarrow sitting (insertion of "g" at the end).
- Not common, as at a textual level this is hard to implement and possibly meaningless.
Detecting “keywords”: Constructing the association table

<table>
<thead>
<tr>
<th></th>
<th>Class A</th>
<th>Class B</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>a</td>
<td>b</td>
<td>$a+b$</td>
</tr>
<tr>
<td>~ Word</td>
<td>c</td>
<td>d</td>
<td>$c+d$</td>
</tr>
<tr>
<td>Total</td>
<td>$a+c$</td>
<td>$b+d$</td>
<td>$N = a+b+c+d$</td>
</tr>
</tbody>
</table>
Pearson’s chi-squared statistic

\[\chi^2 = \sum \frac{(\text{observed} - \text{expected})^2}{\text{expected}} = \sum_{i=1}^{k} \frac{(Y_i - np_i)^2}{np_i} \]

\(d.f. = k - 1 \)
Chi-squared test of independence

Basic intuition: if the two variables were independent of each other, the relative proportions should be similar to the marginal distributions.

E.g. a word would occur at equal relative frequencies in each subset of a corpus

Since we have two margins, we need to calculate the proportion as:

$$\hat{p}_{word, subset} = \hat{p}_{word} \times \hat{p}_{subset}$$

Generally:

$$\text{Expected Frequency} = \frac{r}{N} \cdot \frac{c}{N} \cdot n = \frac{rc}{N}$$

where r and c refer to row and column marginals
Quantifying Uncertainty

- Critical if we really want to compare texts
- Question: How?
 - Make parametric assumptions about the data-generating process. For instance, we could model feature counts according to a Poisson distribution.
 - Use a sampling procedure and obtain averages from the samples. For instance we could sample 100-word sequences, compute reliability, and look at the spread of the readability measures from the samples
 - Bootstrapping: a generalized resampling method
Bootstrapping

- *Bootstrapping* refers to repeated resampling of data points with replacement.
- Used to estimate the error variance (i.e., the standard error) of an estimate when the sampling distribution is unknown (or cannot be safely assumed).
- Robust in the absence of parametric assumptions.
- Useful for some quantities for which there is no known sampling distribution, such as computing the standard error of a median.
Bootstrapping illustrated

```r
> ## illustrate bootstrap sampling
> # using sample to generate a permutation of the sequence 1:10
> sample(10)
 [1]  6  1  2  4  5  7  9  3 10  8
> # bootstrap sample from the same sequence
> sample(10, replace=T)
 [1]  3  3 10  7  5  3  9  8  7  6
> # bootstrap sample from the same sequence with probabilities that
> # favor the numbers 1-5
> # favor the numbers 1-5
> prob1 <- c(rep(.15, 5), rep(.05, 5))
> prob1
 [1] 0.15 0.15 0.15 0.15 0.15 0.05 0.05 0.05 0.05 0.05
> sample(10, replace=T, prob=prob1)
 [1] 10  4  7  6  5  2  9  5  1  5
```
Using loops:

bs <- NULL
for (i in 1:100) {
 bs[i] <- median(sample(spending, replace=TRUE))
}
quantile(bs, c(.025, .5, .975))
median(spending)
Bootstrapping the standard error of the median

Using `lapply` and `sapply`:

```r
resamples <- lapply(1:100, function(i) sample(spending, replace=TRUE))
bs <- sapply(resamples, median)
quantile(bs, c(.025, .5, .975))
```
Using a user-defined function:

```r
b.median <- function(data, n) {
  resamples <- lapply(1:n, function(i) sample(data, replace=T))
  sapply(resamples, median)
  std.err <- sqrt(var(r.median))
  list(std.err=std.err, resamples=resamples, medians=r.median)
}
summary(b.median(spending, 10))
summary(b.median(spending, 100))
summary(b.median(spending, 400))
median(spending)
```
Bootstrapping the standard error of the median

Using R’s **boot** library:

```r
library(boot)
samplemedian <- function(x, d) return(median(x[d]))
quantile(boot(spending, samplemedian, R=10)$t, c(.025, .5, .975))
quantile(boot(spending, samplemedian, R=100)$t, c(.025, .5, .975))
quantile(boot(spending, samplemedian, R=400)$t, c(.025, .5, .975))
```

Note: There is a good reference on using `boot()` from http://www.mayin.org/ajayshah/KB/R/documents/boot.html
Guidelines for bootstrapping text

- Bootstrap by resampling tokens.
 Advantage: This is easily done from the document-feature matrix.
 Disadvantage: Ignores the natural units into which text is grouped, such as sentences

- Bootstrap by resampling sentences.
 Advantage: Produces more meaningful (potentially readable) texts, more faithful to data-generating process.
 Disadvantage: More complicated, cannot be done from dfm, must segment the text into sentences and construct a new dfm for each resample.

- Other options:
 - paragraphs
 - pages
 - chapters
 - stratified: words within sentences or paragraphs