Day 6: Machine Learning and Classification

Kenneth Benoit

Essex Summer School 2012

July 16, 2012
Continuum of Approaches so far..

- Purely qualitative approach - read the text and write up our judgement, (not very computer-aided)
- Thematic analysis - computer as bookkeeper
- Content analysis with coding
- Human-defined dictionary
- Automated dictionary
- Model similarity to known examples

Choose a method that is (i) in keeping with your field and (ii) appropriate to your research question and data.
Machine Learning

- Relatively recent branch of a recent field (A.I.)
- Lots of published research and lots of practical applications
- Similar techniques to many social science models, but with a different terminology and philosophy
- Goal is to create algorithms which can make useful generalizations and predictions based on observed data.
Practical applications..

▶ Character recognition (postcodes, license plates)
▶ Medical and actuarial prediction and diagnosis
▶ Antenna design, circuit design, automated cars
▶ Product demand and market prediction
▶ Stock market and insurance modelling
For text analysis..

▶ Spam detection, language detection, translation, search expansion
▶ IBM Watson. Search engines, databases
▶ Sentiment analysis
▶ Speech recognition, natural language generation
Typical supervised learning framework

- Given a set of documents each belonging to a particular class
- Build a model based on the association between features of the documents and their class
- The model should be able to predict the class of new examples
Feature Value Matrix

▶ Generalization of term-document matrix

▶ Features might not be words, values might not be document frequencies

▶ All supervised machine learning algorithms define a similarity between new examples and previously seen examples for which the ‘correct answer’ is known.
Algorithmic approach

- Models viewed algorithmically (procedurally)
- Mostly depends on custom software
- Some public software packages exist: WEKA, Orange, NLTK, LibSVM
Classification vs Regression

- Regression in machine learning terms means trying to predict a value
- Classification means trying to predict a class
- Error for regression measured as a distance from the correct value
- Error in classification measured as proportion of examples classified correctly (accuracy)
An example - Naive Bayes Classification

- Choose the most probable class, given the data
Naive Bayes algorithm example

- Training Data:
 - The Dark Knight is really good
 - I don’t like the new Batman
 - The Batman movie is good
 - Bale is really bad in TDK

- Test item:
 - I think the Batman film is good
Nearest Neighbour algorithm

- Use values for features to map training examples to points in a space
- Map new example into the space and measure distance between the new example and each of the previous examples
- Give the new example the same label as its nearest neighbour, or take a vote among the labels of the K nearest neighbours.
Distance Measures

- Euclidean Distance measure
 - Root of the sum of the squared differences in each dimension (features)
- Cosine similarity - dot product divided by magnitude
Learning process

- Collect as much data as possible, as long as it is representative of the data that you want to apply the algorithm to.
- Divide the data into training, testing, and validation data
- Decide on features and text pre-processing
- Decide on methodology of implementation
Options for data collection

- Historical data
- Data from the same time in a different domain
- Manually generated data
Options for training and testing sets

▶ K-fold Cross validation
▶ Only separate training and validation data (not testing)
▶ Divide training data into K portions
▶ Use one portion as testing data, others as training
▶ Alternate the portions, using each as testing data once
▶ Find average accuracy across all partitions
▶ If K = number of training examples, called ”leave-one-out” cross validation
Measuring Error

- For regression and scaling, error can be measured qualitatively, or as a mean of the differences between predicted value and ‘true’ value.

- For classification, error is measured as the proportion of correctly classified examples (accuracy).

- Accuracy can be misleading, depends on number of classes and distribution of examples among classes.

- Baseline algorithms give meaning to accuracy figures.

- Majority class - always predict the most frequent class.

- Gibbs method - predict class with same probability of class distribution.
Precision and Recall

- Same intuition as specificity and sensitivity earlier in course.

- **Precision**: \[
\frac{\text{truepositives}}{\text{truepositives} + \text{falsepositives}}
\]

- **Recall**: \[
\frac{\text{truepositives}}{\text{truepositives} + \text{falsenegatives}}
\]

- **Accuracy**: \[
\frac{\text{Correctlyclassified}}{\text{Totalnumberofexamples}}
\]

- **F1**: \[
\frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}
\]
Amount of data required

- What is the cost of acquiring more data versus the benefit of reducing the error?

- Train on a small subset of your current available data and record performance on a test set

- Train on gradually increasing amount of data and graph relationship between size of the training set and accuracy

- Other costs - training time, equipment usage, testing time

- Use the most appropriate measure of error - are false positives and true negatives equally costly?
Feature selection and pre-processing

- Simplest approach for text - each word is a feature, its value for a given class is the sum of its frequency across each document in the class

- Other options:
 - Aggregate frequencies across stems or lemmas
 - Aggregate using a hand-compiled dictionary
 - Aggregate known collocations or compound phrases
 - Select features by learning correlation between feature choice and performance