Day 3: Descriptive Inference from Text

Kenneth Benoit

Essex Summer School 2012

July 11, 2012

Some useful linguistic terms

From a field known as *corpus linguistics* type for our purposes, a unique word token any word – so token count is total words hapax legomena (or just *hapax*) are types that occur just once

Key Words in Context

KWIC *Key words in context* Refers to the most common format for concordance lines. A KWIC index is formed by sorting and aligning the words within an article title to allow each word (except the stop words) in titles to be searchable alphabetically in the index.

lime (14)

79[C.10] 4 /Which was builded of lime and sand;/Until they came to
247A.6 4 /That was well biggit with lime and stane.
303A.1 2 bower/Well built wi lime and stane/And Willie came
247A.9 2 /That was well biggit wi lime and stane,/Nor has he stoln
305A.2 1 a castell biggit with lime and stane,/O gin it stands not
305A.71 2 is my awin/I biggit it wi lime and stane;/The Tinnies and
79[C.10] 6 /Which was builded with lime and stone.
305A.30 1 a prittie castell of lime and stone,/O gif it stands not
108.15 2 /Which was made both of lime and stone,/Shee tooke him by
175A.33 2 castle then/Was made of lime and stone;/The vttermost
178[H.2] 2 near by /Well built with lime and stone;/There is a lady
178F.18 2 built with stone and lime !/But far mair pittie on Lady
178G.35 2 was biggit wi stane and lime!/But far mair pity o Lady
2D.16 1 big a cart o stane and lime /Gar Robin Redbreast trail it

Another KWIC Example (Seale et al (2006)

Table 3

Example of Keyword in Context (KWIC) and associated word clusters display

Extracts from Keyword in Context (KWIC) list for the word 'scan' An MRI scan then indicated it had spread slightly Fortunately, the MRI scan didn't show any involvement of the lymph nodes

3 very worrying weeks later, a bone **scan** also showed up clear. The bone **scan** is to check whether or not the cancer has spread to the bones.

The bone scan is done using a type of X-ray machine.

The results were terrific, CT scan and pelvic X-ray looked good Your next step appears to be to await the result of the scan and I wish you well there.

I should go and have an MRI scan and a bone scan

Three-word clusters most frequently associated with keyword 'scan'

N	Cluster	Freq
1	A bone scan	28
2	Bone scan and	25
3	An MRI scan	18
4	My bone scan	15
5	The MRI scan	15
6	The bone scan	14
7	MRI scan and	12
8	And Mri scan	9
9	Scan and MRI	9

Basic descriptive summaries of text

Readability statistics Use a combination of syllables and sentence length to indicate "readability" in terms of complexity Vocabulary diversity (At its simplest) involves measuring a *type-to-token ratio* (TTR) where unique words are types and the total words are tokens

Word (relative) frequency

Theme (relative) frequency

Length in characters, words, lines, sentences, paragraphs, pages, sections, chapters, etc.

Flesch-Kincaid readability index

F-K is a modification of the original Flesch Reading Ease Index:

$$206.835 - 1.015 \left(\frac{\text{total words}}{\text{total sentences}}\right) - 84.6 \left(\frac{\text{total syllables}}{\text{total words}}\right)$$

Interpretation: 0-30: university level; 60-70: understandable by 13-15 year olds; and 90-100 easily understood by an 11-year old student.

Flesch-Kincaid rescales to the US educational grade levels (1–12):

$$0.39 \left(\frac{\rm total \ words}{\rm total \ sentences}\right) + 11.8 \left(\frac{\rm total \ syllables}{\rm total \ words}\right) - 15.59$$

Gunning fog index

- Measures the readability in terms of the years of formal education required for a person to easily understand the text on first reading
- Usually taken on a sample of around 100 words, not omitting any sentences or words
- ► Formula:

$$0.4\left[\left(\frac{\rm total \ words}{\rm total \ sentences}\right) + 100\left(\frac{\rm complex \ words}{\rm total \ words}\right)\right]$$

where complex words are defined as those having three or more syllables, not including proper nouns (for example, Ljubljana), familiar jargon or compound words, or counting common suffixes such as -es, -ed, or -ing as a syllable

Simple descriptive table about texts: Example

Speaker	Party	Tokens	Types
Brian Cowen	FF	5,842	1,466
Brian Lenihan	FF	7,737	1,644
Ciaran Cuffe	Green	1,141	421
John Gormley (Edited)	Green	919	361
John Gormley (Full)	Green	2,998	868
Eamon Ryan	Green	1,513	481
Richard Bruton	FG	4,043	947
Enda Kenny	FG	3,863	1,055
Kieran ODonnell	FG	2,054	609
Joan Burton	LAB	5,728	1,471
Eamon Gilmore	LAB	3,780	1,082
Michael Higgins	LAB	1,139	437
Ruairi Quinn	LAB	1,182	413
Arthur Morgan	SF	6,448	1,452
Caoimhghin O'Caolain	SF	3,629	1,035
All Texts		49,019	4,840
Min		919	361
Max		7,737	1,644
Median		3,704	991
Hapaxes with Gormley Edited		67	
Hapaxes with Gormley F	ull Speech	69	

Summarizing

- Involves characterizing the coded text units using additional quantification
- Examples

Category frequencies Coded category frequency measures, such as the proportion of times "economy" is mentioned in a speech, or the proportion of mentions of the environment Type/token measures Frequency tabulations of token types and their frequencies Range/variance Here we might be interested in the total number or the spread or variance of categories used in particular documents or by particular speakers

 May also involve scales or indexes constructed from summary information

Summarizing: Example

Democratic	Republican
iraq	consent
administration	ask
year	unanimous
health	bill
families	committee
program	senate
care	30
debt	2006
women	border
veterans	senator
help	vote
americans	law
country	hearing
children	authorized
new	further
education	states
funding	proceed
workers	order
programs	session
disaster	time

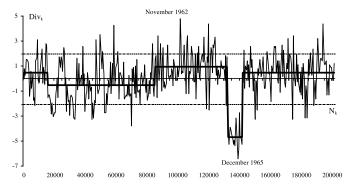
Top 20 Democratic and Republican words from the 2006 US Senate (source: Nicholas Beauchamp 2008)

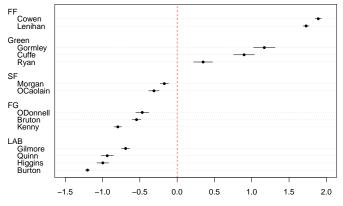
Summarizing: Scale Example

- A very simple example comes from the CMP, using PER110 "European Union: Positive Mentions" and PER108 "European Union: Negative Mentions"
- ▶ The overall pro- versus anti- EU-ness can be assessed as PER110 PER108. Theoretical range is [-100, 100].
- A more complicated example is the CMP's famous "rile" index, which adds 26 categories of the "right" and subtracts from this the sum of 13 categories of the "left".

Vocabulary Diversity Example

 Variations use vocabulary diversity analysis (e.g. Labbé et. al. 2004)




Fig. 8. Evolution of vocabulary diversity in General de Gaulle's broadcast speeches (June 1958–April 1969).

Inference and Reporting

- This involves drawing conclusions from the research, and these conclusions will depend on the *validity* established by the research design
- Reporting means communicating the results in a clear and relevant fashion. (This can be challenging – see for instance the Schonhardt-Bailey article.)
- No iron-clad rules here use your discretion as applied to a particular case

Graphical Methods: Example

 From a uni-dimensional scaling model from a term-document matrix (Poisson scaling)

Poisson Scaling of Position

LIWC Example

 From an application of the Linguistic Inquiry and Word Count dictionary to texts by Al Zawahiri and Bin Laden, benchmarked against a general corpus

	Bin Ladin	Zawahiri	Controls	р
	(1988 to 2006)	(2003 to 2006)	N = 17	(two-
	N = 28	N = 15		tailed)
Word Count	2511.5	1996.4	4767.5	
Big words (greater than 6 letters)	21.2a	23.6b	21.1a	.05
Pronouns	9.15ab	9.83b	8.16a	.09
I (e.g. I, me, my)	0.61	0.90	0.83	
We (e.g. we, our, us)	1.94	1.79	1.95	
You (e.g. you, your, yours)	1.73	1.69	0.87	
He/she (e.g. he, hers, they)	1.42	1.42	1.37	
They (e.g., they, them)	2.17a	2.29a	1.43b	.03
Prepositions	14.8	14.7	15.0	
Articles (e.g. a, an, the)	9.07	8.53	9.19	
Exclusive Words (but, exclude)	2.72	2.62	3.17	
Affect	5.13a	5.12a	3.91b	.01
Positive emotion (happy, joy, love)	2.57a	2.83a	2.03b	.01
Negative emotion (awful, cry, hate)	2.52a	2.28ab	1.87b	.03
Anger words (hate, kill)	1.49a	1.32a	0.89b	.01
Cognitive Mechanisms	4.43	4.56	4.86	
Time (clock, hour)	2.40b	1.89a	2.69b	.01
Past tense verbs	2.21a	1.63a	2.94b	.01
Social Processes	11.4a	10.7ab	9.29b	.04
Humans (e.g. child, people, selves)	0.95ab	0.52a	1.12b	.05
Family (mother, father)	0.46ab	0.52a	0.25b	.08
Content				
Death (e.g. dead, killing, murder)	0.55	0.47	0.64	
Achievement	0.94	0.89	0.81	
Money (e.g. buy, economy, wealth)	0.34	0.38	0.58	
Religion (e.g. faith, Jew, sacred)	2.41	1.84	1.89	

Note. Numbers are mean percentages of total words per text file. Statistical tests are between Bin Ladin, Zawahiri, and Controls. Documents whose source indicates "Both" (n=3) or "Unknown" (n=2) were excluded due to their small sample sizes.