Describing and comparing texts

Kenneth Benoit

Quants 3: Quantitative Text Analysis
Week 2: February 23, 2018

Day 2 Outline

- Problems to watch out for
- Getting to know your texts
- Key words in context
- Revisiting feature selection
- Feature weighting strategies
- Collocations
- Named entity recognition
- Readability and lexical diversity
- Assignment 2

Problems you are likely to encounter

- Problems with encoding
- Problems file formats
- Extraneous junk (page footers, numbers, titles, etc)
- misspelllings
- different normalizations (e.g. for Japanese)

Simple descriptive table about texts: Describe your data!

Speaker	Party	Tokens	Types
Brian Cowen	FF	5,842	1,466
Brian Lenihan	FF	7,737	1,644
Ciaran Cuffe	Green	1,141	421
John Gormley (Edited)	Green	919	361
John Gormley (Full)	Green	2,998	868
Eamon Ryan	Green	1,513	481
Richard Bruton	FG	4,043	947
Enda Kenny	FG	3,863	1,055
Kieran ODonnell	FG	2,054	609
Joan Burton	LAB	5,728	1,471
Eamon Gilmore	LAB	3,780	1,082
Michael Higgins	LAB	1,139	437
Ruairi Quinn	LAB	1,182	413
Arthur Morgan	SF	6,448	1,452
Caoimhghin O'Caolain	SF	3,629	1,035
All Texts		49,019	4,840
Min		919	361
Max		7,737	1,644
Median	3,704	991	
Hapaxes with Gormley Edited	67		
Hapaxes with Gormley Full Speech	69		

Exploring Texts: Key Words in Context

KWIC Key words in context Refers to the most common format for concordance lines. A KWIC index is formed by sorting and aligning the words within an article title to allow each word (except the stop words) in titles to be searchable alphabetically in the index.
lime (14)
79[C.10] 4 /Which was builded of lime and sand;/Until they came to
247A. 6 4/That was well biggit with lime and stane.
303A. 12 bower,/Well built wi lime and stane,/And Willie came
247A. 92 /That was well biggit wi lime and stane,/Nor has he stoln
305A. 21 a castell biggit with lime and stane,/O gin it stands not
305A. 712 is my awin,/I biggit it wi lime and stane;/The Tinnies and
79[C.10] 6 /Which was builded with lime and stone.
305A. 301 a prittie castell of lime and stone,/O gif it stands not
108.152 /Which was made both of lime and stone,/Shee tooke him by
175A. 332 castle then,/Was made of lime and stone;/The vttermost
178[H.2] 2 near by,/Well built with lime and stone;/There is a lady
178F. 182 built with stone and lime!/But far mair pittie on Lady
178G. 352 was biggit wi stane and lime!/But far mair pity o Lady
2D. 161 big a cart o stane and lime,/Gar Robin Redbreast trail it

Another KWIC Example (Seale et al (2006)

Table 3
Example of Keyword in Context (KWIC) and associated word clusters display

Extracts from Keyword in Context (KWIC) list for the word 'scan' An MRI scan then indicated it had spread slightly
Fortunately, the MRI scan didn't show any involvement of the lymph nodes
3 very worrying weeks later, a bone scan also showed up clear.
The bone scan is to check whether or not the cancer has spread to the bones.
The bone scan is done using a type of X-ray machine.
The results were terrific, CT scan and pelvic X-ray looked good Your next step appears to be to await the result of the scan and I wish you well there.
I should go and have an MRI scan and a bone scan
Three-word clusters most frequently associated with keyword 'scan'

N	Cluster	Freq
1	A bone scan	28
2	Bone scan and	25
3	An MRI scan	18
4	My bone scan	15
5	The MRI scan	15
6	The bone scan	14
7	MRI scan and	12
8	And Mri scan	9
9	Scan and MRI	9

Another KWIC Example: Irish Budget Speeches

[^0]
Irish Budget Speeches KIWC in quanteda

$\Theta \theta \theta$
 IR Illit \square 亚 \square
 $>$ data(iebudgets)
 > iebudgets2010 <- subset(iebudgets, year==2010)
 $>$ kwic(iebudgets2010, "christmas", regex=TRUE)

R Console
[2010_BUDGET_02_Richard_Bruton_FG.txt, 628] [2010_BUDGET_03_Joan_Burton_LAB.txt, 371] [2010_BUDGET_03_Joan_Burton_LAB.txt, 379] [2010_BUDGET_03_Joan_Burton_LAB.txt, 922] [2010_BUDGET_03_Joan_Burton_LAB.txt, 1518] [2010_BUDGET_03_Joan_Burton_LAB.txt, 1726] [2010_BUDGET_03_Joan_Burton_LAB.txt, 3159]
[2010_BUDGET_04_Arthur_Morgan_SF.txt, 346]
[2010_BUDGET_04_Arthur_Morgan_SF.txt, 3239]
[2010_BUDGET_04_Arthur_Morgan_SF.txt, 3244]
[2010_BUDGET_04_Arthur_Morgan_SF.txt, 3272]
[2010_BUDGET_04_Arthur_Morgan_SF.txt, 5899]
[2010_BUDGET_06_Enda_Kenny_FG.txt, 2629]
[2010_BUDGET_07_Kieran_ODonnell_FG.txt, 1365]
[2010_BUDGET_08_Eamon_Gilmore_LAB.txt, 550]
[2010_BUDGET_08_Eamon_Gilmore_LAB.txt, 638]
[2010_BUDGET_08_Eamon_Gilmore_LAB.txt, 998]
[2010_BUDGET_13_Ciaran_Cuffe_Green.txt, 911] [2010_BUDGET_14_Caoimhghin_OCaolain_SF.txt, 148]

preword

word
and to see out this Christmas in the hope of something to suggest titles for a Christmas hit single. Fianna Fáil's hit Fianna Fáil's hit single for Christmas will be, "I saw NAMA women will say goodbye after Christmas because they must take the in single golf clubs this Christmas. With a possible election next Community faking its message this Christmas? Is the Society of St.
bags. In previous years at Christmas time people were laden down
e204 per week or the Christmas bonus. Of course, that is
to social welfare payments this Christmas. The loss of the Christmas
Christmas. The loss of the Christmas bonus, a double payment which
streets on Santa presents and Christmas food. The Government's Scrooge measures
their jobs, who face this Christmas in debt, in poverty and
o implement the reduction before Christmas. I do not know whether
from the change in the Christmas period. We suggested that the
cut of e641, including the Christmas payment. A couple on invalidity
are on social welfare, the Christmas payment is gone. Earnest lectures of emigration. Once again this Christmas, we will witness the scenes noted recently that over the Christmas recess work will be done will all be over by Christmas. If it is the last

Defining Features

- words
- word stems or lemmas: this is a form of defining equivalence classes for word features
- word segments, especially for languages using compound words, such as German, e.g.
Rindfleischetikettierungsberwachungsaufgabenbertragungsgesetz (the law concerning the delegation of duties for the supervision of cattle marking and the labelling of beef)
Saunauntensitzer

Defining Features（cont．）

－＂word＂sequences，especially when inter－word delimiters （usually white space）are not commonly used，as in Chinese莎拉波娃现在居住在美国东南部的佛罗里达。今年4月
9日，莎拉波娃在美国第一大城市细约度过了 18 岁生
日。生日派对上，莎拉波娃露出了甜美的微笑。
－linguistic features，such as parts of speech
－（if qualitative coding is used）coded or annotated text segments
－linguistic features：parts of speech

Stemming words

Lemmatization refers to the algorithmic process of converting words to their lemma forms.
stemming the process for reducing inflected (or sometimes derived) words to their stem, base or root form. Different from lemmatization in that stemmers operate on single words without knowledge of the context.
both convert the morphological variants into stem or root terms
example: produc from
production, producer, produce, produces, produced
Why? Reduce feature space by collapsing different words into a stem (e.g. "happier" and "happily" convey same meaning as "happy")

Varieties of stemming algorithms

Issues with stemming approaches

- The most common is probably the Porter stemmer
- But this set of rules gets many stems wrong, e.g.
- policy and police considered (wrongly) equivalent
- general becomes gener, iteration becomes iter
- Other corpus-based, statistical, and mixed approaches designed to overcome these limitations
- Key for you is to be careful through inspection of morphological variants and their stemmed versions
- Sometimes not appropriate! e.g. Schofield and Minmo (2016) find that "stemmers produce no meaningful improvement in likelihood and coherence (of topic models) and in fact can degrade topic stability"

Parts of speech

- the Penn "Treebank" is the standard scheme for tagging POS

Number	Tag	Description
1.	CC	Coordinating conjunction
2.	CD	Cardinal number
3.	DT	Determiner
4.	EX	Existential there
5.	FW	Foreign word
6.	IN	Preposition or subordinating conjunction
7.	JJ	Adjective
8.	JJR	Adjective, comparative
9.	JJS	Adjective, superlative
10.	LS	List item marker
11.	MD	Modal
12.	NN	Noun, singular or mass
13.	NNS	Noun, plural
14.	NNP	Proper noun, singular
15.	NNPS	Proper noun, plural
16.	PDT	Predeterminer
17.	POS	Possessive ending
18.	PRP	Personal pronoun
19.	PRPS	Possessive pronoun
20.	RB	Adverb

21.	RBR	Adverb, comparative
22.	RBS	Adverb, superlative
23.	RP	Particle
24.	SYM	Symbol
25.	TO	to
26.	UH	Interjection
27.	VB	Verb, base form
28.	VBD	Verb, past tense
29.	VBG	Verb, gerund or present participle
30.	VBN	Verb, past participle
31.	VBP	Verb, non-3rd person singular present
32.	VBZ	Verb, 3rd person singular present
33.	WDT	Wh-determiner
34.	WP	Wh-pronoun
35.	WP\$	Possessive wh-pronoun
36.	WRB	Wh-adverb

Parts of speech (cont.)

> library("spacyr")
> txt <- "Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29. Mr. Vinken is chairman of Elsevier N.V., the Dutch publishing group."
> spacy_parse(txt)

	id sen			token	lemma	pos	entity
1	text1	1	1	Pierre	pierre	PROPN	PERSON_B
2	text1	1	2	Vinken	vinken	PROPN	PERSON_I
3	text1	1	3	,		PUNCT	
4	text1	1	4	61	61	NUM	DATE_B
5	text1	1	5	years	year	NOUN	DATE_I
6	text1	1	6	old	old	ADJ	DATE_I
7	text1	1	7	,	,	PUNCT	
8	text1	1	8	will	will	VERB	
9	text1	1	9	join	join	VERB	
10	text1	1	10	the	the	DET	
11	text1	1	11	board	board	NOUN	
12	text1	1	12	as	as	ADP	
13	text1	1	13	a	a	DET	
14	text1	1	14	nonexecutive	nonexecutive	ADJ	
15	text1	1	15	$\backslash \mathrm{n}$	$\backslash \mathrm{n}$	SPACE	
16	text1	1	16	director	director	NOUN	
17	text1	1	17	Nov.	nov.	PROPN	DATE_B
18	text1	1	18	29	29	NUM	DATE_I
19	text1	1	19			PUNCT	

Parts of speech (cont.)

20	text1	1	20			SPACE	
21	text1	2	1	Mr .	mr .	PROPN	
22	text1	2	2	Vinken	vinken	PROPN	PERSON_B
23	text1	2	3	is	be	VERB	
24	text1	2	4	chairman	chairman	NOUN	
25	text1	2	5	of	of	ADP	
26	text1	2	6	Elsevier	elsevier	PROPN	ORG_B
27	text1	2	7	N.V.	n.v.	PROPN	ORG_I
28	text1	2	8	,	,	PUNCT	
29	text1	2	9	$\backslash \mathrm{n}$	$\backslash \mathrm{n}$	SPACE	WORK_OF_ART_B
30	text1	2	10	the	the	DET	WORK_OF_ART_I
31	text1	2	11	Dutch	dutch	ADJ	NORP_B
32	text1	2	12	publishing	publishing	NOUN	
33	text1	2	13	group	group	NOUN	
34	text1	2	14	.		PUNCT	

Stemming v. lemmas

> library("quanteda")
> tokens(txt) \%>\% tokens_wordstem()
tokens from 1 document.
text1 :

[1] "Pierr"	"Vinken"	","	"61"
[9] "join"	"the"	"board"	"as"
[17] "."	"29"	"."	"Mr"
[25] "of"	"Elsevier"	"N.V"	"."
[33] "group"	"."		

sp\$lemma

[1] "pierre"	"vinken"	", "		"61"	"year"
[7] ","	"will"	"join"		"the"	"board"
[13] "a"	"nonexecutive"	" $\backslash \mathrm{n}$	"	"director"	"nov."
[19] "."	" "	"mr."		"vinken"	"be"
[25] "of"	"elsevier"	"n.v."		", "	" $\backslash \mathrm{n}$
[31] "dutch"	"publishing"	"group"		". "	

Weighting strategies for feature counting

term frequency Some approaches trim very low-frequency words. Rationale: get rid of rare words that expand the feature matrix but matter little to substantive analysis
document frequency Could eliminate words appearing in few documents
inverse document frequency Conversely, could weight words more that appear in the most documents
$t f$-idf a combination of term frequency and inverse document frequency, common method for feature weighting

Strategies for feature weighting: tf-idf

- $t f_{i, j}=$ thecountoftermt $_{j}$ in document i
- $i d f_{i}=\log \frac{N}{\left\{d_{i}: t_{j} \in d_{i}\right\}}$
where
- N is the total number of documents in the set
- $\left\{d_{i}: t_{j} \in d_{i}\right\}$ is the number of documents where the term t_{j} appears
- $t f_{-i d f_{i, j}}=t f_{i, j} \cdot i d f_{j}$

Computation of tf-idf: Example

Example: We have 100 political party manifestos, each with 1000 words. The first document contains 16 instances of the word "environment"; 40 of the manifestos contain the word "environment".

- The term frequency is 16
- The document frequency is $100 / 40=2.5$, or $\log (2.5)=0.398$
- The $t f$-idf will then be $16 * 0.398=6.37$
- If the word had only appeared in 15 of the 100 manifestos, then the $t f$-idf would be 13.18 (about two times higher).
- A high weight in tf-idf is reached by a high term frequency (in the given document) and a low document frequency of the term in the whole collection of documents; hence the weights hence tend to filter out common terms

Other weighting schemes

- the SMART weighting scheme (Salton 1991, Salton et al): The first letter in each triplet specifies the term frequency component of the weighting, the second the document frequency component, and the third the form of normalization used (not shown). Example: Inn means log-weighted term frequency, no idf, no normalization

Term frequency		Document frequency	
n (natural)	$\mathrm{tf}_{t, d}$	n (no)	1
l (logarithm)	$1+\log \left(\mathrm{tf}_{t, d}\right)$	t (idf)	$\log \frac{N}{\mathrm{df}_{t}}$
a (augmented)	$0.5+\frac{0.5 \times \mathrm{tf}_{t, d}}{\left.\max _{t} \mathrm{tf}_{t, d}\right)}$	p (prob idf)	$\max \left\{0, \log \frac{N-\mathrm{df}_{t}}{\mathrm{df}_{t}}\right\}$
b (boolean)	$\begin{cases}1 & \text { if } \mathrm{tf}_{t, d}>0 \\ 0 & \text { otherwise }\end{cases}$		
L (log ave)	$\frac{1+\log \left(\mathrm{tf}_{t, d}\right)}{1+\log \left(\mathrm{ave}_{t \in d}\left(\mathrm{tf}_{t, d}\right)\right)}$		

- Note: Mostly used in information retrieval, although some use in machine learning

Selecting more than words: collocations

collocations bigrams, or trigrams e.g. capital gains tax
how to detect: pairs occuring more than by chance, by measures of χ^{2} or mutual information measures
example:

Summary Judgment	Silver Rudolph	Sheila Foster
prima facie	COLLECTED WORKS	Strict Scrutiny
Jim Crow	waiting lists	Trail Transp
stare decisis	Academic Freedom	Van Alstyne
Church Missouri	General Bldg	Writings Fehrenbacher
Gerhard Casper	Goodwin Liu	boot camp
Juan Williams	Kurland Gerhard	dated April
LANDMARK BRIEFS	Lee Appearance	extracurricular activities
Lutheran Church	Missouri Synod	financial aid
Narrowly Tailored	Planned Parenthood	scored sections

Table 5: Bigrams detected using the mutual information measure.

Identifying collocations

- Does a given word occur next to another given word with a higher relative frequency than other words?
- If so, then it is a candidate for a collocation or "word bigram"
- We can detect these using χ^{2} or likelihood ratio measures (Dunning paper)
- Implemented in quanteda as textstat ${ }_{c}$ ollocations()

Getting texts into quanteda

- text format issue
- text files
- zipped text files
- spreadsheets/CSV
- (pdfs)
- (Twitter feed)
- encoding issue
- metadata and document variable management

Identifying collocations

- Does a given word occur next to another given word with a higher relative frequency than other words?
- If so, then it is a candidate for a collocation
- We can detect these using measures of association, such as a likelihood ratio, to detect word pairs that occur with greater than chance frequency, compared to an independence model
- The key is to distinguish "true collocations" from uninteresting word pairs/triplets/etc, such as "of the"
- Implemented in quanteda as collocations

Example

$C\left(w^{1} w^{2}\right)$	w^{1}	w^{2}
80871	of	the
58841	in	the
26430	to	the
21842	on	the
21839	for	the
18568	and	the
16121	that	the
15630	at	the
15494	to	be
13899	in	a
13689	of	a
13361	by	the
13183	with	the
12622	from	the
11428	New	York
10007	he	said
9775	as	a
9231	is	a
8753	has	been
8573	for	a

Table 5.1 Finding Collocations: Raw Frequency. $C(\cdot)$ is the frequency of something in the corpus.
(from Manning and Schütze, FSNLP, Ch 5)

Example

$C\left(w^{1} w^{2}\right)$	w^{1}	w^{2}
80871	of	the
58841	in	the
26430	to	the
21842	on	the
21839	for	the
18568	and	the
16121	that	the
15630	at	the
15494	to	be
13899	in	a
13689	of	a
13361	by	the
13183	with	the
12622	from	the
11428	New	York
10007	he	said
9775	as	a
9231	is	a
8753	has	been
8573	for	a

Table 5.1 Finding Collocations: Raw Frequency. $C(\cdot)$ is the frequency of something in the corpus.
(from Manning and Schütze, FSNLP, Ch 5)

Contingency tables for bigrams

Tabulate every token against every other token as pairs, and compute for each token:

	token2	\neg token2	Totals
token1	n_{11}	n_{12}	$n_{1 p}$
ᄀtoken1	n_{21}	n_{22}	$n_{1 p}$
Totals	$n_{p 1}$	$n_{p 2}$	$n_{p p}$

Contingency tables for trigrams

		token3	\neg token3	Totals
token1	token2	n_{111}	n_{112}	$n_{11 p}$
token1	ᄀtoken2	n_{121}	n_{122}	$n_{12 p}$
\neg token1	token2	n_{211}	n_{212}	$n_{21 p}$
\neg token1	ᄀtoken2	n_{221}	n_{222}	$n_{22 p}$
Totals				
$n_{p p 1}$	$n_{p p 2}$	$n_{p p p}$		

computing the "independence" model

- bigrams

$$
\operatorname{Pr}(\text { token } 1, \text { token } 2)=\operatorname{Pr}(\text { token } 1) \operatorname{Pr}(\text { token } 2)
$$

- trigrams

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{t} 1, \mathrm{t} 2, \mathrm{t} 3)=\operatorname{Pr}(\mathrm{t} 1) \operatorname{Pr}(\mathrm{t} 2) \operatorname{Pr}(\mathrm{t} 3) \\
& \operatorname{Pr}(\mathrm{t} 1, \mathrm{t} 2, \mathrm{t} 3)=\operatorname{Pr}(\mathrm{t} 1, \mathrm{t} 2) \operatorname{Pr}(\mathrm{t} 3) \\
& \operatorname{Pr}(\mathrm{t} 1, \mathrm{t} 2, \mathrm{t} 3)=\operatorname{Pr}(\mathrm{t} 1) \operatorname{Pr}(\mathrm{t} 2) \operatorname{Pr}(\mathrm{t} 3) \\
& \operatorname{Pr}(\mathrm{t} 1, \mathrm{t} 2, \mathrm{t} 3)=\operatorname{Pr}(\mathrm{t} 1, \mathrm{t} 3) \operatorname{Pr}(\mathrm{t} 2)
\end{aligned}
$$

more independence models

- for 4 -grams, there are 14 independence models
- generally: the number equals the Bell number less one, where the Bell number B_{n} can be computed recursively as:

$$
B_{n+1}=\sum_{k=0}^{n}\binom{n}{k} B_{k}
$$

- but most of these are of limited relevance in collocation mining, as they subsume elements of earlier collocations

statistical association measures

where $m_{i j}$ represents the cell frequency expected according to independence:
G^{2} likelihood ratio statistic, computed as:

$$
\begin{equation*}
2 * \sum_{i} \sum_{j}\left(n_{i j} * \log \frac{n_{i j}}{m_{i j}}\right) \tag{1}
\end{equation*}
$$

χ^{2} Pearson's χ^{2} statistic, computed as:

$$
\begin{equation*}
\sum_{i} \sum_{j} \frac{\left(n_{i j}-m_{i j}\right)^{2}}{m_{i j}} \tag{2}
\end{equation*}
$$

statistical association measures (cont.)

pmi point-wise mutual information score, computed as $\log n_{11} / m_{11}$
dice the Dice coefficient, computed as

$$
\begin{equation*}
\frac{n_{11}}{n_{1 .}+n_{.1}} \tag{3}
\end{equation*}
$$

Augmenting collocation detection with additional information

- Use parts of speech information

Tag Pattern	Example
A N	linear function
N N	regression coefficients
A A N	Gaussian random variable
A N N	cumulative distribution function
N A N	mean squared error
N N N	class probability function
N P N	degrees of freedom

Table 5.2 Part of speech tag patterns for collocation filtering. These patterns were used by Justeson and Katz to identify likely collocations among frequently occurring word sequences.

- other (machine prediction) tools

Named Entity recognition

Quantities for comparing texts

Length in characters, words, lines, sentences, paragraphs, pages, sections, chapters, etc.
Readability statistics Use a combination of syllables and sentence length to indicate "readability" in terms of complexity
Vocabulary diversity (At its simplest) involves measuring a type-to-token ratio (TTR) where unique words are types and the total words are tokens
Word (relative) frequency counts or proportions of words
Theme (relative) frequency counts or proportions of (coded) themes

Lexical Diversity

- Basic measure is the TTR: Type-to-Token ratio
- Problem: This is very sensitive to overall document length, as shorter texts may exhibit fewer word repetitions
- Special problem: length may relate to the introdution of additional subjects, which will also increase richness

Lexical Diversity: Alternatives to TTRs

TTR $\frac{\text { total types }}{\text { total tokens }}$
Guiraud $\frac{\text { total types }}{\sqrt{\text { total tokens }}}$
D (Malvern et al 2004) Randomly sample a fixed number of tokens and count those

MTLD the mean length of sequential word strings in a text that maintain a given TTR value (McCarthy and Jarvis, 2010) - fixes the TTR at 0.72 and counts the length of the text required to achieve it

Vocabulary diversity and corpus length

- In natural language text, the rate at which new types appear is very high at first, but diminishes with added tokens

Fig. 1. Chart of vocabulary growth in the tragedies of Racine (chronological order, 500 token intervals).

Vocabulary Diversity Example

- Variations use automated segmentation - here approximately 500 words in a corpus of serialized, concatenated weekly addresses by de Gaulle (from Labbé et. al. 2004)
- While most were written, during the period of December 1965 these were more spontaneous press conferences

Fig. 8. Evolution of vocabulary diversity in General de Gaulle's broadcast speeches (June 1958-April 1969).

Complexity and Readability

- Use a combination of syllables and sentence length to indicate "readability" in terms of complexity
- Common in educational research, but could also be used to describe textual complexity
- Most use some sort of sample
- No natural scale, so most are calibrated in terms of some interpretable metric
- Implemented in quanteda as textstat_readability()

Flesch-Kincaid readability index

- F-K is a modification of the original Flesch Reading Ease Index:
206.835-1.015 $\left(\frac{\text { total words }}{\text { total sentences }}\right)-84.6\left(\frac{\text { total syllables }}{\text { total words }}\right)$

Interpretation: 0-30: university level; 60-70: understandable by 13-15 year olds; and 90-100 easily understood by an 11-year old student.

- Flesch-Kincaid rescales to the US educational grade levels (1-12):

$$
0.39\left(\frac{\text { total words }}{\text { total sentences }}\right)+11.8\left(\frac{\text { total syllables }}{\text { total words }}\right)-15.59
$$

Gunning fog index

- Measures the readability in terms of the years of formal education required for a person to easily understand the text on first reading
- Usually taken on a sample of around 100 words, not omitting any sentences or words
- Formula:

$$
0.4\left[\left(\frac{\text { total words }}{\text { total sentences }}\right)+100\left(\frac{\text { complex words }}{\text { total words }}\right)\right]
$$

where complex words are defined as those having three or more syllables, not including proper nouns (for example, Ljubljana), familiar jargon or compound words, or counting common suffixes such as -es, -ed, or -ing as a syllable

[^0]: I hear soorts shops are doing a roaring trade in single golf clubs this Christmas. With a possible election next year, one never knows when a club might come in handy to deal with men who break their promises. The Minister should ask Tiger Woods about it.

 I have read scores of artides by people who argue that child benefit payments are of Ittle importance, including journalists and acaderics who argue it would make no difference if the payment were restricted. Most of these articles were written by men, none of whom could state absolutely that he spoke for his wife or partner. I have yet to meet a mother of young or teenage children who says casually that child benefit has no importance to her. Perhaps I do not mix in circles where this benefit is a trifle. Certainly, I do not represent a constituency that places no value on the advantages of universal chid berefit.

 Amost every day I hear the voice of Marian Finucane on radio advertisements for the Simon Community, as I am sure everyone here does. She tells us that the current crisis has brought community services to breaking point. I hear the same message from Professor John Monaghan of the Society of St. Vincent de Paul. Are these societies lying? Is the Simon Community faking its message this Christmas? Is the Society of St. Vincent de Paul out of touch? Are they saying social welfare in Ireland is so generous that it can be cut? I have

