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Preview: variance decomposition in MLMs

I Standard model without covariates:

yij = β + ξij

I We can model the dependence within subjects j by splitting ξij into
two components ζj and εij :

yij = β + ζj + εij

I ζj represent level-2 effects, also known as “random intercepts”, with
variance ψ:

ζj ∼ N(0, ψ)

I εij are level-1 errors, with variance θ

εij ∼ N(0, θ)



Basic assumptions of the Classical Linear Regression Model

1. Specification:
I Relationship between X and Y in the population is linear:

E(Y ) = Xβ
I No extraneous variables in X
I No omitted independent variables
I Parameters (β) are constant

2. E(ε) = 0

3. Error terms:
I Var(ε) = σ2, or homoskedastic errors
I E(rεi ,εj ) = 0, or no auto-correlation



Basic Assumptions of the CLRM (continued)

4. X is non-stochastic, meaning observations on independent
variables are fixed in repeated samples

I implies no measurement error in X
I implies no serial correlation where a lagged value of Y would

be used an independent variable
I no simultaneity or endogenous X variables

5. N > k , or number of observations is greater than number of
independent variables (in matrix terms: rank(X ) = k), and no
exact linear relationships exist in X

6. Normally distributed errors: ε|X ∼ N(0, σ2). Technically
however this is a convenience rather than a strict assumption



Ordinary Least Squares (OLS)

I Objective: minimize
∑

e2
i =

∑
(Yi − Ŷi )

2, where

I Ŷi = b0 + b1Xi

I error ei = (Yi − Ŷi )

b =

∑
(Xi − X̄ )(Yi − Ȳ )∑

(Xi − X̄ )

=

∑
XiYi∑
X 2

i

I The intercept is: b0 = Ȳ − b1X̄

I Closely related to ANOVA (sums of squares decomposition)



The “hat” matrix

I The hat matrix H is defined as:

β̂ = (X ′X )−1X ′y

X β̂ = X (X ′X )−1X ′y

ŷ = Hy

I H = X (X ′X )−1X ′ is called the hat-matrix

I Other important quantities, such as ŷ ,
∑

e2
i (RSS) can be

expressed as functions of H

I Corrections for heteroskedastic errors (“robust” standard
errors) involve manipulating H



Some important OLS properties to understand

Applies to y = α + βx + ε

I If β = 0 and the only regressor is the intercept, then this is
the same as regressing y on a column of ones, and hence
α = ȳ — the mean of the observations

I If α = 0 so that there is no intercept and one explanatory
variable x , then β =

P
xyP
x2

I If there is an intercept and one explanatory variable, then

β =

∑
i (xi − x̄)(yi − ȳ)∑

(xi − x̄)2

=

∑
i (xi − x̄)yi∑
(xi − x̄)2



Some important OLS properties (cont.)

I If the observations are expressed as deviations from their
means, y∗ = y − ȳ and x∗ = x − x̄ , then β =

∑
x∗y∗/

∑
x∗2

I The intercept can be estimated as ȳ − βx̄ . This implies that
the intercept is estimated by the value that causes the sum of
the OLS residuals to equal zero.

I The mean of the ŷ values equals the mean y values – together
with previous properties, implies that the OLS regression line
passes through the overall mean of the data points



Normally distributed errors



OLS in Stata

. use dail2002

(Ireland 2002 Dail Election - Candidate Spending Data)

. gen spendXinc = spend_total * incumb

(2 missing values generated)

. reg votes1st spend_total incumb minister spendXinc

Source | SS df MS Number of obs = 462

-------------+------------------------------ F( 4, 457) = 229.05

Model | 2.9549e+09 4 738728297 Prob > F = 0.0000

Residual | 1.4739e+09 457 3225201.58 R-squared = 0.6672

-------------+------------------------------ Adj R-squared = 0.6643

Total | 4.4288e+09 461 9607007.17 Root MSE = 1795.9

------------------------------------------------------------------------------

votes1st | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

spend_total | .2033637 .0114807 17.71 0.000 .1808021 .2259252

incumb | 5150.758 536.3686 9.60 0.000 4096.704 6204.813

minister | 1260.001 474.9661 2.65 0.008 326.613 2193.39

spendXinc | -.1490399 .0274584 -5.43 0.000 -.2030003 -.0950794

_cons | 469.3744 161.5464 2.91 0.004 151.9086 786.8402

------------------------------------------------------------------------------



Examples using the HSB data

The HSB dataset was originally compiled by Raudenbush and Bryk, and
contains data on 7,185 students from 160 different schools.

Student-level variables:

mathach student’s mathematical ability (continuous)

ses student’s socioeconomic status (continuous)

min binary variable for minority

female binary variable for female

School level variables:

shoolid numeric school ID

size number of students attending that school

sector whether school is public sector (0) or private (1)

disclim disciplinary climate of the school (continuous)



HSB data OLS model with two predictors

I Two predictors for math achievement will be socioeconomic
status and whether the school is private or public

I Formula:

mathachi = β0 + β1SESi + β2sectori + εi

I β1 represents the average marginal effect of socioeconomic
status on math achievement, holding sector constant

I β2 represents the effect of of school sector holding
socioeconomic status constant: the expected difference in
achievement between public and private sector students who
have the same socioeconomic status

I In this model only the distance of the effect can differ, as
operationalized through the intercept

I When sector=0, then mathachi = β0 + β1SESi + εi
I When sector=0, then mathachi = (β0 + β2) + β1SESi + εi



HSB data OLS model with two predictors cont.
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Interpretations in Multiple Regression
! We might expect the resulting model to look 

something like this:
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This particular model is of the same form as an analysis of covariance (ANCOVA). Though students of 

public and private schools may differ in their average socioeconomic status, the estimated effect for sector 

adjusts for this difference.  

This adjustment is only possible because the model assumes that the effect of sector on a student’s math 

achievement is the same regardless of their level of SES. This is the ANCOVA assumption of parallel 

regression lines.  

If the assumption of parallel regression lines is not true, then the results of the model can be misleading 

and a better model would include an interaction between SES and Sector. We will explore the estimation 

and interpretation of interactions in depth in Chapter 3. 



HSB data regression: different intercepts

. use http://www.stata-press.com/data/mlmus2/hsb.dta, clear

. reg mathach ses sector

Source | SS df MS Number of obs = 7185

-------------+------------------------------ F( 2, 7182) = 629.83

Model | 50715.9161 2 25357.958 Prob > F = 0.0000

Residual | 289161.018 7182 40.2619073 R-squared = 0.1492

-------------+------------------------------ Adj R-squared = 0.1490

Total | 339876.934 7184 47.3102637 Root MSE = 6.3452

------------------------------------------------------------------------------

mathach | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

ses | 2.948558 .0978306 30.14 0.000 2.756781 3.140334

sector | 1.935013 .1524934 12.69 0.000 1.636081 2.233945

_cons | 11.79325 .1061021 111.15 0.000 11.58526 12.00125

------------------------------------------------------------------------------



HSB data OLS model with “intercept dummy” for sector
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HSB data regression: different slopes

. gen sesXsector = ses*sector

. reg mathach ses sector ses*sector

Source | SS df MS Number of obs = 7185

-------------+------------------------------ F( 3, 7181) = 432.31

Model | 51993.7695 3 17331.2565 Prob > F = 0.0000

Residual | 287883.165 7181 40.0895648 R-squared = 0.1530

-------------+------------------------------ Adj R-squared = 0.1526

Total | 339876.934 7184 47.3102637 Root MSE = 6.3316

------------------------------------------------------------------------------

mathach | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

ses | 3.459632 .1331325 25.99 0.000 3.198653 3.720611

sector | 1.949726 .152189 12.81 0.000 1.651391 2.248062

sesXsector | -1.105438 .1957985 -5.65 0.000 -1.48926 -.7216148

_cons | 11.86764 .1066915 111.23 0.000 11.6585 12.07679

------------------------------------------------------------------------------



HSB data OLS model with different slopes
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One way to “correct” multilevel problem: adjust SEs

I The key problem of having multilevel data is that our
standard errors are wrong, since the assumption of conditional
independence of the errors is violated because of the
multilevel structure

I So one correction would be to “fix” the standard errors
I The standard method is known as the White or Huber-White

“modified sandwich estimator”, allowing for correction of
clustered (heteroskedastic) errors

I Stata has this built-in to most regression commands as an
option: , vec(cluster <clustervar>)

I Works fine if we are only concerned with understanding the
effects of the causal variables aggregated over all level 2
groups. It does not allow us to separate within- versus
between-group effects, nor to examine how the effect of causal
variables varies over level 2 groups



HSB data regression: different slopes
. reg mathach ses sector, vce(cluster schoolid)

Linear regression Number of obs = 7185

F( 2, 159) = 354.53

Prob > F = 0.0000

R-squared = 0.1492

Root MSE = 6.3452

(Std. Err. adjusted for 160 clusters in schoolid)

------------------------------------------------------------------------------

| Robust

mathach | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

ses | 2.948558 .1279373 23.05 0.000 2.695882 3.201233

sector | 1.935013 .3171766 6.10 0.000 1.30859 2.561436

_cons | 11.79325 .2031455 58.05 0.000 11.39204 12.19447

------------------------------------------------------------------------------

. reg mathach ses sector

Source | SS df MS Number of obs = 7185

-------------+------------------------------ F( 2, 7182) = 629.83

Model | 50715.9161 2 25357.958 Prob > F = 0.0000

Residual | 289161.018 7182 40.2619073 R-squared = 0.1492

-------------+------------------------------ Adj R-squared = 0.1490

Total | 339876.934 7184 47.3102637 Root MSE = 6.3452

------------------------------------------------------------------------------

mathach | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

ses | 2.948558 .0978306 30.14 0.000 2.756781 3.140334

sector | 1.935013 .1524934 12.69 0.000 1.636081 2.233945

_cons | 11.79325 .1061021 111.15 0.000 11.58526 12.00125

------------------------------------------------------------------------------



A multilevel dataset with two levels: Peak flow example

. list id wm1 wm2, clean

id wm1 wm2

1. 1 512 525

2. 2 430 415

3. 3 520 508

4. 4 428 444

5. 5 500 500

6. 6 600 625

7. 7 364 460

8. 8 380 390

9. 9 658 642

10. 10 445 432

11. 11 432 420

12. 12 626 605

13. 13 260 227

14. 14 477 467

15. 15 259 268

16. 16 350 370

17. 17 451 443



A multilevel dataset with two levels: Peak flow example
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Variance components model

I Standard model without covariates:

yij = β + ξij

I We can model the dependence within subjects j by splitting
ξij into two components ζj and εij :

yij = β + ζj + εij



Variance components model cont.

I In classic psychometric theory, β+ ζj is subject j ’s “true score”

I The ζj are also called “random intercepts”

I We assume that the ζj are normally distributed:

ζj ∼ N(0, ψ)

and that the εij are normally distributed:

εij ∼ N(0, θ)

I The random intercept ζj can be thought of as a level-2
residual, with level-2 (between subject) variance ψ

I The random term εij can be thought of as a level-1 residual
(within subject) variance θ

I This also means that the observed responses yij are
conditionally independent given ζj : Cor(yij , yi ′j |ζj) = 0



Random intercept variance illustration



Reliability

I Each overall error consists of the two error components ζj and εij :

ξij ≡ ζj + εij

I The error components are independent, so it can be shown that the
total variance is the sum of the between-subject and within-subject
variances:

Var(yij) = Var(β + ζj + εij)

= Var(β) + Var(ζj + εij)

= (0) + ψ + θ

I We can express the proportion of the total variance that is between
subjects as:

ρ =
Var(ζj)

Var(yij)
=

ψ

ψ + θ

I ρ can also be thought of as reliability of measurements for the same
subjects j . It is also analogous to R2 in that it represents the
proportion of the total variance that is “explained” by subjects



Intraclass correlation

I ρ can also be interpreted as the marginal correlation between
measurements on two occasions i and i ′ for the same subject

I So ρ aso represents within-cluster correlation

I We estimate the ICC using parameter estimates for ψ and θ:

ρ̂ =
ψ̂

ψ̂ + θ̂

I Can contrast the ICC with Pearson’s r as:

r =
1

J−1

∑J
j=1(yij − ȳi·)(yi ′j − ȳi ′·)

syi syi′

I Pearson’s r provides a measure of relative agreement, based on
deviations of each i from their respective means

I ICC provides a measure of absolute agreement – and is therefore
affected by linear transformations of the measurements


