Day 2: Estimating models with multi-level data

Introduction to Multilevel Models EUI Short Course 22–27 May, 2011 Prof. Kenneth Benoit

May 23, 2011

Preview: variance decomposition in MLMs

Standard model without covariates:

$$y_{ij} = \beta + \xi_{ij}$$

▶ We can model the dependence within subjects j by splitting ξ_{ij} into two components ζ_j and ϵ_{ij} :

$$y_{ij} = \beta + \zeta_j + \epsilon_{ij}$$

 $ightharpoonup \zeta_j$ represent level-2 effects, also known as "random intercepts", with variance ψ :

$$\zeta_j \sim N(0,\psi)$$

 \triangleright ϵ_{ii} are level-1 errors, with variance θ

$$\epsilon_{ij} \sim N(0, \theta)$$

Basic assumptions of the Classical Linear Regression Model

1. Specification:

- Relationship between X and Y in the population is linear: $E(Y) = X\beta$
- No extraneous variables in X
- ▶ No omitted independent variables
- ▶ Parameters (β) are constant
- 2. $E(\epsilon) = 0$
- 3. Error terms:
 - $Var(\epsilon) = \sigma^2$, or homoskedastic errors
 - ightharpoonup $\mathsf{E}(r_{\epsilon_i,\epsilon_i})=0$, or no auto-correlation

Basic Assumptions of the CLRM (continued)

- 4. X is non-stochastic, meaning observations on independent variables are fixed in repeated samples
 - ▶ implies no *measurement error* in *X*
 - implies no serial correlation where a lagged value of Y would be used an independent variable
 - ▶ no *simultaneity* or *endogenous* X variables
- 5. N > k, or number of observations is greater than number of independent variables (in matrix terms: rank(X) = k), and no exact linear relationships exist in X
- 6. Normally distributed errors: $\epsilon | X \sim N(0, \sigma^2)$. Technically however this is a *convenience* rather than a strict assumption

Ordinary Least Squares (OLS)

- ▶ Objective: minimize $\sum e_i^2 = \sum (Y_i \hat{Y}_i)^2$, where
 - $\hat{Y}_i = b_0 + b_1 X_i$
 - error $e_i = (Y_i \hat{Y}_i)$

$$b = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})}$$
$$= \frac{\sum X_i Y_i}{\sum X_i^2}$$

- ▶ The intercept is: $b_0 = \bar{Y} b_1 \bar{X}$
- Closely related to ANOVA (sums of squares decomposition)

The "hat" matrix

The hat matrix H is defined as:

$$\hat{\beta} = (X'X)^{-1}X'y$$

$$X\hat{\beta} = X(X'X)^{-1}X'y$$

$$\hat{y} = Hy$$

- \vdash $H = X(X'X)^{-1}X'$ is called the *hat-matrix*
- ▶ Other important quantities, such as \hat{y} , $\sum e_i^2$ (RSS) can be expressed as functions of H
- Corrections for heteroskedastic errors ("robust" standard errors) involve manipulating H

Some important OLS properties to understand

Applies to $y = \alpha + \beta x + \epsilon$

- ▶ If $\beta = 0$ and the only regressor is the intercept, then this is the same as regressing y on a column of ones, and hence $\alpha = \bar{y}$ the mean of the observations
- ▶ If $\alpha = 0$ so that there is no intercept and one explanatory variable x, then $\beta = \frac{\sum xy}{\sum x^2}$
- ▶ If there is an intercept and one explanatory variable, then

$$\beta = \frac{\sum_{i}(x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum(x_{i} - \bar{x})^{2}}$$
$$= \frac{\sum_{i}(x_{i} - \bar{x})y_{i}}{\sum(x_{i} - \bar{x})^{2}}$$

Some important OLS properties (cont.)

- ▶ If the observations are expressed as deviations from their means, $y*=y-\bar{y}$ and $x^*=x-\bar{x}$, then $\beta=\sum x^*y^*/\sum x^{*2}$
- ▶ The intercept can be estimated as $\bar{y} \beta \bar{x}$. This implies that the intercept is estimated by the value that causes the sum of the OLS residuals to equal zero.
- ► The mean of the ŷ values equals the mean y values together with previous properties, implies that the OLS regression line passes through the overall mean of the data points

Normally distributed errors

OLS in Stata

- . use dail2002 (Ireland 2002 Dail Election - Candidate Spending Data)
- . gen spendXinc = spend_total * incumb
 (2 missing values generated)
- . reg votes1st spend_total incumb minister spendXinc

Source	SS	df	MS		Number of obs F(4, 457)		
Model Residual	2.9549e+09 1.4739e+09	4 738	3728297 5201.58		Prob > F = 0.0 R-squared = 0.6	= 0.0000 = 0.6672	
Total	4.4288e+09	461 9607	7007.17		Root MSE	= 1795.9	
votes1st	Coef.	Std. Err.	-	P> t	[95% Conf.		
spend_total incumb minister spendXinc _cons	.2033637 5150.758 1260.001 1490399 469.3744	.0114807 536.3686 474.9661 .0274584 161.5464	17.71 9.60 2.65 -5.43 2.91	0.000 0.000 0.008 0.000 0.004	.1808021 4096.704 326.613 2030003 151.9086	.2259252 6204.813 2193.39 0950794 786.8402	

Examples using the HSB data

The HSB dataset was originally compiled by Raudenbush and Bryk, and contains data on 7,185 students from 160 different schools.

Student-level variables:

```
mathach student's mathematical ability (continuous)
ses student's socioeconomic status (continuous)
min binary variable for minority
female binary variable for female
```

School level variables:

```
shoolid numeric school ID
size number of students attending that school
sector whether school is public sector (0) or private (1)
disclim disciplinary climate of the school (continuous)
```

HSB data OLS model with two predictors

- Two predictors for math achievement will be socioeconomic status and whether the school is private or public
- Formula:

$$mathach_i = \beta_0 + \beta_1 SES_i + \beta_2 sector_i + \epsilon_i$$

- \triangleright β_1 represents the average marginal effect of socioeconomic status on math achievement, holding sector constant
- eta_2 represents the effect of of school sector holding socioeconomic status constant: the expected difference in achievement between public and private sector students who have the same socioeconomic status
- In this model only the distance of the effect can differ, as operationalized through the intercept
 - ▶ When sector=0, then mathach_i = $\beta_0 + \beta_1 SES_i + \epsilon_i$
 - When sector=0, then $mathach_i = (\beta_0 + \beta_2) + \beta_1 SES_i + \epsilon_i$

HSB data OLS model with two predictors cont.

HSB data regression: different intercepts

- . use http://www.stata-press.com/data/mlmus2/hsb.dta, clear
- . reg mathach ses sector

Source	SS				Number of obs F(2, 7182)		
Model Residual	50715.9161 289161.018 339876.934	2 7182	25357.958 40.2619073			= = =	0.0000 0.1492 0.1490
mathach		Std.	Err. t	P> t	[95% Conf.		
ses sector	2.948558 1.935013	.0978; .1524; .1061	306 30.14 934 12.69	0.000	2.756781 1.636081 11.58526	2	.140334 .233945 2.00125

HSB data OLS model with "intercept dummy" for sector

HSB data regression: different slopes

- . gen sesXsector = ses*sector
- . reg mathach ses sector ses*sector

Source	SS	df 	MS		Number of obs = F(3, 7181) =	7185 432.31
Model Residual	51993.7695	3 173 7181 40.	31.2565 0895648		Prob > F = R-squared = Adj R-squared =	0.0000 0.1530 0.1526
Total	339876.934	7184 47.	3102637			6.3316
mathach	Coef.			P> t	[95% Conf. In	terval]
ses	3.459632	.1331325	25.99	0.000	3.198653 3	.720611
sector sesXsector	1.949726 -1.105438	.152189	12.81 -5.65	0.000	1.651391 2	.248062

HSB data OLS model with different slopes

One way to "correct" multilevel problem: adjust SEs

- ➤ The key problem of having multilevel data is that our standard errors are wrong, since the assumption of conditional independence of the errors is violated because of the multilevel structure
- ▶ So one correction would be to "fix" the standard errors
 - The standard method is known as the White or Huber-White "modified sandwich estimator", allowing for correction of clustered (heteroskedastic) errors
 - Stata has this built-in to most regression commands as an option: , vec(cluster <clustervar>)
- ▶ Works fine if we are only concerned with understanding the effects of the causal variables aggregated over all level 2 groups. It does not allow us to separate within- versus between-group effects, nor to examine how the effect of causal variables varies over level 2 groups

HSB data regression: different slopes

. reg mathach ses sector, vce(cluster schoolid)

regression

Number of obs = 7185F(2, 159) = 354.53Prob > F = 0.0000R-squared = 0.1492Root MSE = 6.3452

(Std. Err. adjusted for 160 clusters in schoolid)

mathach	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
+						
ses	2.948558	.1279373	23.05	0.000	2.695882	3.201233
sector	1.935013	.3171766	6.10	0.000	1.30859	2.561436
_cons	11.79325	.2031455	58.05	0.000	11.39204	12.19447

. reg mathach ses sector

Source	l SS	df	MS		Number of obs = 718 F(2, 7182) = 629.8	-
Model Residual	50715.9161 289161.018	2 25 7182 40.	357.958 2619073		Prob > F = 0.000 R-squared = 0.149 Adj R-squared = 0.149 Root MSE = 6.345	00
mathach	Coef.	Std. Err.		P> t	[95% Conf. Interval	
ses sector _cons	2.948558	.0978306 .1524934 .1061021	30.14 12.69 111.15	0.000 0.000 0.000	2.756781 3.14033 1.636081 2.23394 11.58526 12.0012	5

A multilevel dataset with two levels: Peak flow example

. list id wm1 wm2, clean

	id	wm1	wm2
1.	1	512	525
2.	2	430	415
3.	3	520	508
4.	4	428	444
5.	5	500	500
6.	6	600	625
7.	7	364	460
8.	8	380	390
9.	9	658	642
10.	10	445	432
11.	11	432	420
12.	12	626	605
13.	13	260	227
14.	14	477	467
15.	15	259	268
16.	16	350	370
17.	17	451	443

A multilevel dataset with two levels: Peak flow example

Variance components model

Standard model without covariates:

$$y_{ij} = \beta + \xi_{ij}$$

▶ We can model the dependence within subjects j by splitting ξ_{ij} into two components ζ_j and ϵ_{ij} :

$$y_{ij} = \beta + \zeta_j + \epsilon_{ij}$$

Variance components model cont.

- ▶ In classic psychometric theory, $\beta + \zeta_i$ is subject j's "true score"
- ▶ The ζ_i are also called "random intercepts"
- ▶ We assume that the ζ_i are normally distributed:

$$\zeta_i \sim N(0, \psi)$$

and that the ϵ_{ii} are normally distributed:

$$\epsilon_{ij} \sim N(0, \theta)$$

- ▶ The random intercept ζ_j can be thought of as a level-2 residual, with level-2 (between subject) variance ψ
- ▶ The random term ϵ_{ij} can be thought of as a level-1 residual (within subject) variance θ
- ▶ This also means that the observed responses y_{ij} are conditionally independent given ζ_j : Cor $(y_{ij}, y_{i'j}|\zeta_j) = 0$

Random intercept variance illustration

Figure 2.4: Illustration of distributions of error components for a subject j

Reliability

▶ Each overall error consists of the two error components ζ_j and ϵ_{ij} :

$$\xi_{ij} \equiv \zeta_j + \epsilon_{ij}$$

▶ The error components are independent, so it can be shown that the total variance is the sum of the between-subject and within-subject variances:

$$Var(y_{ij}) = Var(\beta + \zeta_j + \epsilon_{ij})$$

$$= Var(\beta) + Var(\zeta_j + \epsilon_{ij})$$

$$= (0) + \psi + \theta$$

We can express the proportion of the total variance that is between subjects as:

$$\rho = \frac{\operatorname{Var}(\zeta_j)}{\operatorname{Var}(\gamma_{ii})} = \frac{\psi}{\psi + \theta}$$

ρ can also be thought of as reliability of measurements for the same subjects j. It is also analogous to R² in that it represents the proportion of the total variance that is "explained" by subjects

Intraclass correlation

- ρ can also be interpreted as the marginal correlation between measurements on two occasions i and i' for the same subject
- ▶ So ρ aso represents within-cluster correlation
- We estimate the ICC using parameter estimates for ψ and θ :

$$\hat{\rho} = \frac{\hat{\psi}}{\hat{\psi} + \hat{\theta}}$$

► Can contrast the ICC with Pearson's *r* as:

$$r = \frac{\frac{1}{J-1} \sum_{j=1}^{J} (y_{ij} - \bar{y}_{i\cdot}) (y_{i'j} - \bar{y}_{i'\cdot})}{s_{y_i} s_{y_{i'}}}$$

- ▶ Pearson's *r* provides a measure of *relative agreement*, based on deviations of each *i* from their respective means
- ► ICC provides a measure of absolute agreement and is therefore affected by linear transformations of the measurements