Day 1: Introduction to multi-level data problems

Introduction to Multilevel Models EUI Short Course 22–27 May, 2011 Prof. Kenneth Benoit

May 22, 2011

Course logistics and overview

- \blacktriangleright Purpose of the course
	- \blacktriangleright introductory
	- \triangleright basic mathematical understanding of MLMs
	- \blacktriangleright applied, emphasis on Stata
	- \triangleright Day 5 covers a few non-linear models
- \triangleright What we will not do
	- \triangleright work with really complicated multi-level structures
	- \blacktriangleright deal with estimation issues
	- \blacktriangleright use Bayesian methods
- \blacktriangleright Further caveats
- \blacktriangleright Texts and how to use them
- \blacktriangleright Software and datasets
- \blacktriangleright Homework format, timing
- \triangleright Overview of other course logistics

What is multilevel data?

- \triangleright Multilevel data comes from a data structure in the population that is hierarchical, with sample data consisting of a multistage sample from this population
- \triangleright The classic example is schools and pupils: first we take a sample of schools, then sample pupils within each school
- \triangleright We would then say that pupils are nested within schools
- \triangleright Other examples:
	- \triangleright individuals nested within countries (survey data)
	- \triangleright experts nested within countries (expert survey data)
	- \triangleright coded documents nested within coders (Comparative Manifesto Project)
	- \triangleright political parties within national contexts
- \blacktriangleright Variables may vary at either level
- Basic terminology: lowest level is Level 1, higher is Level 2
- Response variables (Y) always vary at the lowest level

The structure of multilevel data

- variable is an observation for a given time, and the level 2 variable is $\frac{d}{dt}$ are sampled and then multiple micro-units (for example, individuals) are sampled with $\frac{d}{dt}$ \triangleright a variation on this is longitudinal data structure, where the level 1 a subject
- **E** surface the unintentional: for instance we could have policy categories from manifestos (level 1) coded by coder (level 2); or survey respondents (level 1) nested within interviewer (level 2)
- $\sum_{i=1}^{n}$ common example of $\sum_{i=1}^{n}$ from the education field: structured $\sum_{i=1}^{n}$ ight terminology may vary $-$ here we refer to multilevel models. generically but terms found in the literature include: variance models, (general) mixed models, and hierarchical linear models components models, random-coefficients models and random-effects

Why would special models be needed for multilevel data?

- \blacktriangleright The usual assumptions for causal inference from regression models is that individual observations are independent
- \triangleright With nested structures this may not be the case: the correlation between observations within a common unit will be higher than the average correlation of observations between units
- \triangleright Consequence is that we will underestimate the uncertainty of causal effects from pooled estimates
- \blacktriangleright In addition, only multilevel models can help us separate within-unit from between-unit effects, especially the different average effects and the different effects of covariates

The ecological fallacy

- \blacktriangleright The ecological fallacy refers to the fallacy of inferring individual behavior from aggregate data – in our context, inferring Level 1 relationships based on Level 2 units
- \triangleright Arises when level 2 variables and level 1 variables reflect different causal processes
- \triangleright originally from Robinson (1950) who studied the relationship between literacy and race in the US. The correlation between mean literacy rates and mean proportions of the black population was 0.95, but the individual-level correlation ignoring the grouping was just is 0.20
- \triangleright A problem in many political research questions, esp. voting behavior inferred from aggregated results

The atomistic fallacy

- \triangleright The atomistic fallacy (aka *individualistic fallacy*) may occur when drawing inferences about group-level relationships from individual-level data
- \triangleright Arises because individual-level associations associations may differ of those at the group level
- \triangleright Example: we might find that individual income is positively associated with decreased mortality from heart disease. From this we should not infer, howeer, that at the country level, increasing per capita income is associated with decreasing heart disease mortality. In fact, across countries we might actually increase heart disease mortality by increasing income.

Stata and "robust" clustered standard errors"

- \triangleright One method of correcting for the effect of clusters is to specify the vce(cluster clustvar) as an option to regression commands
- \blacktriangleright This relaxes the requirement that the errors be independent, by allowing them to be correlated within each cluster group
- \blacktriangleright The correction only affects the standard errors, not the estimated coefficients, since it operates only on the variance-covariance matrix
- \triangleright This will not get at the core issues of interest for multilevel models, which have to do with separating between-group effects from within-group effects, and especially not the provision for random intercepts and or slopes

The organization of multilevel data

 \triangleright Multilevel data are distinguished by their organization according to multilevel identifying units. Examples:

- \triangleright constituency ID
- \triangleright country ID
- \blacktriangleright school ID

 \blacktriangleright There are two basic formats for organizing data that are clustered by identifying units:

wide format two columns of data contain the same information, distinguished by different levels long format different levels are themselves variables (in their own columns

Zen and the art of reshapeing

- \triangleright some things cannot be done in long format. For instance if we want to plot one set of scores against another, e.g. taxes v. spending versus social dimension from the expert surveys
- \triangleright For this we need the wide format, where each dimension forms a separate variable and the identifier defines a unique row
- \triangleright To convert from long to wide (and vice versa), we need the reshape command
- \triangleright The key to using reshape is to determine what the logical observation i is and the subobservation i that will be used to organize the data

Zen and the art of reshapeing continued

Given this data, you could use reshape to convert from one form to the other:

. reshape long inc, i(id) j(year) (goes from top-form to bottom) . reshape wide inc, i(id) j(year) (goes from bottom-form to top)

Example of multilevel data: Benoit and Marsh (2008)

. use dail2002spending (Irish Dail 2002 from Benoit and Marsh 2008)

. list constID constituency namelast party votes1st incumb m spent in 6/28, clean

Benoit and Marsh (2008) example continued

. desc

Sorted by: constID namelast

Constitituency-level m, electorate

Candidate-level namelast, votes1st, incumb, wonseat, spent, party (and we could view party as having a special status)

Long v. wide data format: PPMD example

. use PPMD_detail, clear (Party Policy in Modern Democracies, Kenneth Benoit and Michael Laver)

. sample 20, count (206945 observations deleted)

. list Country Party Dimension Scale Survey_Label_ID Score Vote_Share Election_Date, clean

Long v. wide data format: PPMD example

- \triangleright The PPMD dataset is organized as long data, where the basic unit of variation is the Score variable
- \triangleright Score represents the placement on a 1–20 point scale of either the left-right location or the low–high importance
- \blacktriangleright The different variables are:

Country a code designating the country Party a country-specific alphanumeric identifier for party Dimension one of 40-odd policy dimensions Scale either Position or Importance Survey_Label_ID country-specific respondent ID

 \triangleright This is a useful way to *store* the data, but may not be useful for analyzing it, although this depends

Long v. wide data format: PPMD example continued

For data analysis based on tables, the long format is required. Example:

. use PPMD_detail, clear (Party Policy in Modern Democracies, Kenneth Benoit and Michael Laver)

. table Party Dimension if Country=="IT":cntryLab & Scale==1 & Dimension<15, c(mean Score) format(%9.1f)

--- Party |
|abbreviat | Policy dimension ion | Taxes v. Spending Social Environment Decentralization Left-Right ----------+-- AN | 10.1 18.3 13.5 14.9 16.9 DS | 6.7 5.0 7.3 7.4 6.0 FI | 17.5 12.9 17.2 8.9 15.6 Green | 4.9 3.4 1.7 9.5 4.0 It.Val. | 8.6 9.9 8.3 9.1 10.1 LN | 15.1 17.1 15.3 2.4 16.9 MSFT | 6.7 18.5 10.7 16.2 19.0 Marg | 8.5 11.9 8.3 8.1 8.0 PDCI | 3.9 4.2 6.4 12.5 3.3 Pann | 15.2 2.0 9.3 6.8 12.0
RC | 2.9 3.7 5.6 13.4 2.1 RC | 2.9 3.7 5.6 13.4 2.1 SDI | 9.3 7.1 9.6 8.9 8.6 UDC | 10.6 16.0 11.7 10.5 12.4

Long v. wide data format: PPMD example continued

. table Country Dimension if Dimension<5 & Country>60

Long v. wide data format: PPMD example continued

For data analysis based on tables, the long format is required. Example:

. ttest Score if Dimension>13, by(Scale)

Two-sample t test with equal variances

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 1.0000

Reshape example with expert survey data

. reshape wide Score, i(Country Survey_Label_ID Party Vote_Share Scale) j(Dimension) $(note: \n\dot{i} = 1 \n2 \n3 \n4 \n5 \n6 \n7 \n8 \n9 \n10 \n11 \n12 \n13 \n14 \n15 \n16 \n17 \n18 \n19 \n20 \n21 \n22 \n23 \n24 \n25 \n26 \n27 \n28 \n29 \n30 \n31 \n32 \n33 \n34 \n35 \n36 \n37 \n38 \n39 \n30 \n31 \n32 \n33 \n34 \n35 \n37 \n38 \n39 \n30 \n31 \n32 \n33 \n34 \n35 \n37$

. list Country Party Scale Survey_Label_ID Vote_Share Score1-Score4 in 1/10, clean

Reshape example with expert survey data

. graph twoway (qfitci Mean24 Mean13) (scatter Mean24 Mean13, msize(small) m(oh)) if Scale==1, > xtitle(Left-Right) ytitle(EU Integration) legend(off)

Introducing variance decomposition models

 \blacktriangleright Standard model without covariates:

$$
y_{ij} = \beta + \xi_{ij}
$$

 \triangleright We can model the dependence within subjects *j* by splitting ξ_{ij} into two components ζ_i and ϵ_{ii} :

$$
y_{ij} = \beta + \zeta_j + \epsilon_{ij}
$$

 \triangleright ζ represent level-2 effects, also known as "random intercepts", with variance ψ :

 $\zeta_i \sim N(0, \psi)$

 \blacktriangleright ϵ_{ii} are level-1 errors, with variance θ

$$
\epsilon_{ij} \sim N(0,\theta)
$$

 \triangleright More complicated models will be explored later, such as random coefficients (involving β differences at level-2)