Day 7: Supervised Text Scaling

Kenneth Benoit

Essex Summer School 2014
July 29, 2014

Wordscores conceptually

- Two sets of texts
- Reference texts: texts about which we know something (a scalar dimensional score)
- Virgin texts: texts about which we know nothing (but whose dimensional score wed like to know)
- These are analogous to a "training set" and a "test set" in classification
- Basic procedure:

1. Analyze reference texts to obtain word scores
2. Use word scores to score virgin texts

Wordscores Procedure

Wordscores Procedure

Wordscores Procedure

Wordscores Procedure

Wordscores mathematically: Reference texts

- Start with a set of I reference texts, represented by an $I \times J$ document-term frequency matrix $C_{i j}$, where i indexes the document and j indexes the J total word types
- Each text will have an associated "score" a_{i}, which is a single number locating this text on a single dimension of difference
- This can be on a scale metric, such as 1-20
- Can use arbitrary endpoints, such as $-1,1$
- We normalize the document-term frequency matrix within each document by converting $C_{i j}$ into a relative document-term frequency matrix (within document), by dividing $C_{i j}$ by its word total marginals:

$$
\begin{equation*}
F_{i j}=\frac{C_{i j}}{C_{i}} \tag{1}
\end{equation*}
$$

where $C_{i}=\sum_{j=1}^{J} C_{i j}$

Wordscores mathematically: Word scores

- Compute an $I \times J$ matrix of relative document probabilities $P_{i j}$ for each word in each reference text, as

$$
\begin{equation*}
P_{i j}=\frac{F_{i j}}{\sum_{i=1}^{l} F_{i j}} \tag{2}
\end{equation*}
$$

- This tells us the probability that given the observation of a specific word j, that we are reading a text of a certain reference document i

Wordscores mathematically: Word scores (example)

- Assume we have two reference texts, A and B
- The word "choice" is used 10 times per 1,000 words in Text A and 30 times per 1,000 words in Text B
- So F_{i} "choice" $=\{.010, .030\}$
- If we know only that we are reading the word choice in one of the two reference texts, then probability is 0.25 that we are reading Text A, and 0.75 that we are reading Text B

$$
\begin{align*}
& P_{A} \text { "choice" }=\frac{.010}{(.010+.030)}=0.25 \tag{3}\\
& P_{B} \text { "choice" }=\frac{.030}{(.010+.030)}=0.75 \tag{4}
\end{align*}
$$

Wordscores mathematically: Word scores

- Compute a J-length "score" vector S for each word j as the average of each document i 's scores a_{i}, weighted by each word's $P_{i j}$:

$$
\begin{equation*}
S_{j}=\sum_{i=1}^{l} a_{i} P_{i j} \tag{5}
\end{equation*}
$$

- In matrix algebra, $\underset{1 \times J}{S}=\underset{1 \times 1}{a} \cdot \underset{\mid \times J}{P}$
- This procedure will yield a single "score" for every word that reflects the balance of the scores of the reference documents, weighted by the relative document frequency of its normalized term frequency

Wordscores mathematically: Word scores

- Continuing with our example:
- We "know" (from independent sources) that Reference Text A has a position of -1.0 , and Reference Text B has a position of $+1.0$
- The score of the word choice is then

$$
0.25(-1.0)+0.75(1.0)=-0.25+0.75=+0.50
$$

Wordscores mathematically: Scoring "virgin" texts

- Here the objective is to obtain a single score for any new text, relative to the reference texts
- We do this by taking the mean of the scores of its words, weighted by their term frequency
- So the score v_{k} of a virgin document k consisting of the j word types is:

$$
\begin{equation*}
v_{k}=\sum_{j}\left(F_{k j} \cdot s_{j}\right) \tag{6}
\end{equation*}
$$

where $F_{k j}=\frac{C_{k j}}{C_{k}}$ as in the reference document relative word frequencies

- Note that new words outside of the set J may appear in the K virgin documents - these are simply ignored (because we have no information on their scores)
- Note also that nothing prohibits reference documents from also being scored as virgin documents

Wordscores mathematically: Rescaling raw text scores

- Because of overlapping or non-discriminating words, the raw text scores will be dragged to the interior of the reference scores (we will see this shortly in the results)
- Some procedures can be applied to rescale them, either to a unit normal metric or to a more "natural" metric
- Martin and Vanberg (2008) have proposed alternatives to the LBG (2003) rescaling

Computing confidence intervals

- The score v_{k} of any text represents a weighted mean
- LBG (2003) used this logic to develop a standard error of this mean using a weighted variance of the scores in the virgin text
- Given some assumptions about the scores being fixed (and the words being conditionally independent), this yields approximately normally distributed errors for each v_{k}
- An alternative would be to bootstrap the textual data prior to constructing $C_{i j}$ and $C_{k j}$ - see Lowe and Benoit (2012)

Pros and Cons of the Wordscores approach

- Fully automated technique with minimal human intervention or judgment calls - only with regard to reference text selection
- Language-blind: all we need to know are reference scores
- Could potentially work on texts like this:
(See http://www.kli.org)

Pros and Cons of the Wordscores approach

- Estimates unknown positions on a priori scales - hence no inductive scaling with a posteriori interpretation of unknown policy space
- Very dependent on correct identification of:
- appropriate reference texts
- appropriate reference scores

Suggestions for choosing reference texts

- Texts need to contain information representing a clearly dimensional position
- Dimension must be known a priori. Sources might include:
- Survey scores or manifesto scores
- Arbitrarily defined scales (e.g. -1.0 and 1.0)
- Should be as discriminating as possible: extreme texts on the dimension of interest, to provide reference anchors
- Need to be from the same lexical universe as virgin texts
- Should contain lots of words

Suggestions for choosing reference values

- Must be "known" through some trusted external source
- For any pair of reference values, all scores are simply linear rescalings, so might as well use $(-1,1)$
- The "middle point" will not be the midpoint, however, since this will depend on the relative word frequency of the reference documents
- Reference texts if scored as virgin texts will have document scores more extreme than other virgin texts
- With three or more reference values, the mid-point is mapped onto a multi-dimensional simplex. The values now matter but only in relative terms (we are still investigating this fully)

Multinomial Bayes model of Class given a Word Class posterior probabilities

$$
P\left(c_{k} \mid w_{j}\right)=\frac{P\left(w_{j} \mid c_{k}\right) P\left(c_{k}\right)}{P\left(w_{j} \mid c_{k}\right) P\left(c_{k}\right)+P\left(w_{j} \mid c_{\neg k}\right) P\left(c_{\neg k}\right)}
$$

- This represents the posterior probability of membership in class k for word j
- Under certain conditions, this is identical to what LBG (2003) called $P_{\text {wr }}$
- Under those conditions, the LBG "wordscore" is the linear difference between $P\left(c_{k} \mid w_{j}\right)$ and $P\left(c_{\neg k} \mid w_{j}\right)$

"Certain conditions"

- The LBG approach required the identification not only of texts for each training class, but also "reference" scores attached to each training class
- Consider two "reference" scores s_{1} and s_{2} attached to two classes $k=1$ and $k=2$. Taking P_{1} as the posterior $P(k=1 \mid w=j)$ and P_{2} as $P(k=2 \mid w=j)$, A generalised score s_{j}^{*} for the word j is then

$$
\begin{aligned}
s_{j}^{*} & =s_{1} P_{1}+s_{2} P_{2} \\
& =s_{1} P_{1}+s_{2}\left(1-P_{1}\right) \\
& \left.=s_{1} P_{1}+s_{2}-s_{2} P_{1}\right) \\
& =P_{1}\left(s_{1}-s_{2}\right)+s_{2}
\end{aligned}
$$

"Certain conditions": More than two reference classes

- For more than two reference classes, if the reference scores are ordered such that $s_{1}<s_{2}<\cdots<s_{K}$, then

$$
\begin{aligned}
s_{j}^{*} & =s_{1} P_{1}+s_{2} P_{2}+\cdots+s_{K} P_{K} \\
& =s_{1} P_{1}+s_{2} P_{2}+\cdots+s_{K}\left(1-\sum_{k=1}^{K-1} P_{k}\right) \\
& =\sum_{k=1}^{K-1} P_{i}\left(s_{k}-s_{K}\right)+s_{I}
\end{aligned}
$$

A simpler formulation:
 Use reference scores such that $s_{1}=-1.0, s_{K}=1.0$

- From above equations, it should be clear that any set of reference scores can be linearly rescaled to endpoints of $-1.0,1.0$
- This simplifies the "simple word score"

$$
s_{j}^{*}=\left(1-2 P_{1}\right)+\sum_{k=2}^{K-1} P_{k}\left(s_{k}-1\right)
$$

- which simplifies with just two reference classes to:

$$
s_{j}^{*}=1-2 P_{1}
$$

Implications

- LBG's "word scores" come from a linear combination of class posterior probabilities from a Bayesian model of class conditional on words
- We might as well always anchor reference scores at $-1.0,1.0$
- There is a special role for reference classes in between $-1.0,1.0$, as they balance between "pure" classes - more in a moment
- There are alternative scaling models, such that used in Beauchamp's (2012) "Bayesscore", which is simply the difference in logged class posteriors at the word level. For $s_{1}=-1.0, s_{2}=1.0$,

$$
\begin{aligned}
s_{j}^{B} & =-\log P_{1}+\log P_{2} \\
& =\log \frac{1-P_{1}}{P_{1}}
\end{aligned}
$$

Moving to the document level

- The "Naive" Bayes model of a joint document-level class posterior assumes conditional independence, to multiply the word likelihoods from a "test" document, to produce:

$$
P(c \mid d)=P(c) \frac{\prod_{j} P\left(w_{j} \mid c\right)}{P\left(w_{j}\right)}
$$

- So we could consider a document-level relative score, e.g. $1-2 P\left(c_{1} \mid d\right)$ (for a two-class problem)
- But this turns out to be useless, since the predictions of class are highly separated

Moving to the document level

- A better solution is to score a test document as the arithmetic mean of the scores of its words
- This is exactly the solution proposed by LBG (2003)
- Beauchamp (2012) proposes a "Bayesscore" which is the arithmetic mean of the log difference word scores in a document - which yields extremely similar results

And now for some demonstrations with data...

Application 1: Dail speeches from LBG (2003)

(a) NB Speech scores by party, smooth=0, imbalanced priors

(b) Document scores from NB v. Classic Wordscores

- three reference classes (Opposition, Opposition, Government) at $\{-1,-1,1\}$
- no smoothing

Application 1: Dail speeches from LBG (2003)

(c) NB Speech scores by party, smooth=1, uniform class priors

(d) Document scores from NB v. Classic Wordscores

- two reference classes (Opposition+Opposition, Government) at $\{-1$, 1\}
- Laplace smoothing

Application 2: Classifying legal briefs (Evans et al 2007) Wordscores v. Bayesscore

(a) Word level

(b) Document level

- Training set: Petitioner and Respondent litigant briefs from Grutter/Gratz v. Bollinger (a U.S. Supreme Court case)
- Test set: 98 amicus curiae briefs (whose P or R class is known)

Application 2: Classifying legal briefs (Evans et al 2007) Posterior class prediction from NB versus log wordscores

Application 3: LBG's British manifestos
 More than two reference classes

- x-axis: Reference scores of $\{5.35,8.21,17.21\}$ for Lab, LD, Conservatives
- y-axis: Reference scores of $\{10.21,5.26,15.61\}$

Application 4: Back to Evans et al (2007) for some Feature Selection

Machine learning commonly selects additional or deselects existing features:

- select (top 200) bi-grams and (top 50) trigrams, e.g. "capital punishment"
- exclude (top 200) stop words, e.g. "the", "and", ...
- count only binary word occurrence (Bernoulli NB)
- experiment with smoothing

For testing we returned to the amicus curiae briefs of Evans et al (2007)

Application 4: Back to Evans et al (2007) for some Feature Selection: Bigram example

Summary Judgment	Silver Rudolph	Sheila Foster
prima facie	COLLECTED WORKS	Strict Scrutiny
Jim Crow	waiting lists	Trail Transp
stare decisis	Academic Freedom	Van Alstyne
Church Missouri	General Bldg	Writings Fehrenbacher
Gerhard Casper	Goodwin Liu	boot camp
Juan Williams	Kurland Gerhard	dated April
LANDMARK BRIEFS	Lee Appearance	extracurricular activities
Lutheran Church	Missouri Synod	financial aid
Narrowly Tailored	Planned Parenthood	scored sections

Top bigrams detected using the mutual information measure

Application 4: Back to Evans et al (2007) for some Feature Selection: Classification results

	Parameters				Method			
	Wordscores		Naive Bayes Scal					
Smoothing	Stopwords	Bigrams	Distribution	Accuracy	F1	Accuracy	F	
No	No	No	Multi	0.897	0.836	-	-	
No	No	No	Bern	0.459	0.647	-	-	
Add-1	No	No	Multi	0.897	0.836	0.897	0.8	
Add-1	No	No	Bern	-	-	0.489	0.6	
Add-1	Yes	No	Multi	0.897	0.843	0.918	0.8	
Add-1	Yes	No	Bern	-	-	0.500	0.6	
Add-1	Yes	Yes	Multi	0.887	0.810	0.897	0.8	
Add-1	Yes	Yes	Bern	-	-	0.785	0.7	

Relative performance of NB and Wordscores as classifiers, given different feature selection.
(F1 score is the harmonic mean of average precision and recall)

Conclusions

- The venerable LBG 2003 wordscores method is based on an underlying Bayesian probability model
- Naive Bayes class prediction is useless for scaling, but Bayesian posterior scaling (using arithmetic means) is (also) useful for classification
- Always use $-1,1$ reference scores
- Two class training sets are preferred, since middle classes only combine extreme classes
- Use uniform priors - this implies aggregating training documents by class
- No knockout results from feature selection so far, implying just using the unfiltered texts seems to be OK for supervised methods

