Day 3: Introduction to Machine Learning

Kenneth Benoit

Data Mining and Statistical Learning

March 2, 2015

How do we get "true" condition?

- In some domains: through more expensive or extensive tests
- In social sciences: typically by expert annotation or coding
- A scheme should be tested and reported for its reliability

Inter-rater reliability

Different types are distinguished by the way the reliability data is obtained.

Measures of agreement

- Percent agreement Very simple: (number of agreeing ratings) / (total ratings) * 100\%
- Correlation
- (usually) Pearson's r, aka product-moment correlation
- Formula: $r_{A B}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{A_{i}-\bar{A}}{s_{A}}\right)\left(\frac{B_{i}-\bar{B}}{s_{B}}\right)$
- May also be ordinal, such as Spearman's rho or Kendall's tau-b
- Range is $[0,1]$
- Agreement measures
- Take into account not only observed agreement, but also agreement that would have occured by chance
- Cohen's κ is most common
- Krippendorf's α is a generalization of Cohen's κ
- Both range from $[0,1]$

Reliability data matrixes

Example here used binary data (from Krippendorff)

Article:	1	2	3	4	5	6	7	8	9	10	
Coder A	1	1	0	0	0	0	0	0	0	0	
Coder B	0	1	1	0	0	1	0	1	0	0	

- A and B agree on 60% of the articles: 60% agreement
- Correlation is (approximately) 0.10
- Observed disagreement: 4
- Expected disagreement (by chance): 4.4211
- Krippendorff's $\alpha=1-\frac{D_{o}}{D_{e}}=1-\frac{4}{4.4211}=0.095$
- Cohen's κ (nearly) identical

Naive Bayes classification

- The following examples refer to "words" and "documents" but can be thought of as generic "features" and "cases"
- We will being with a discrete case, and then cover continuous feature values
- Objective is typically MAP: identification of the maximum a posteriori class probability

Multinomial Bayes model of Class given a Word

Consider J word types distributed across / documents, each assigned one of K classes.
At the word level, Bayes Theorem tells us that:

$$
P\left(c_{k} \mid w_{j}\right)=\frac{P\left(w_{j} \mid c_{k}\right) P\left(c_{k}\right)}{P\left(w_{j}\right)}
$$

For two classes, this can be expressed as

$$
\begin{equation*}
=\frac{P\left(w_{j} \mid c_{k}\right) P\left(c_{k}\right)}{P\left(w_{j} \mid c_{k}\right) P\left(c_{k}\right)+P\left(w_{j} \mid c_{\neg k}\right) P\left(c_{\neg k}\right)} \tag{1}
\end{equation*}
$$

Multinomial Bayes model of Class given a Word Class-conditional word likelihoods

$$
P\left(c_{k} \mid w_{j}\right)=\frac{P\left(w_{j} \mid c_{k}\right) P\left(c_{k}\right)}{P\left(w_{j} \mid c_{k}\right) P\left(c_{k}\right)+P\left(w_{j} \mid c_{\neg k}\right) P\left(c_{\neg k}\right)}
$$

- The word likelihood within class
- The maximum likelihood estimate is simply the proportion of times that word j occurs in class k, but it is more common to use Laplace smoothing by adding 1 to each oberved count within class

Multinomial Bayes model of Class given a Word Word probabilities

$$
P\left(c_{k} \mid w_{j}\right)=\frac{P\left(w_{j} \mid c_{k}\right) P\left(c_{k}\right)}{P\left(w_{j}\right)}
$$

- This represents the word probability from the training corpus
- Usually uninteresting, since it is constant for the training data, but needed to compute posteriors on a probability scale

Multinomial Bayes model of Class given a Word Class prior probabilities

$$
P\left(c_{k} \mid w_{j}\right)=\frac{P\left(w_{j} \mid c_{k}\right) P\left(c_{k}\right)}{P\left(w_{j} \mid c_{k}\right) P\left(c_{k}\right)+P\left(w_{j} \mid c_{\neg k}\right) P\left(c_{\neg k}\right)}
$$

- This represents the class prior probability
- Machine learning typically takes this as the document frequency in the training set
- This approach is flawed for scaling, however, since we are scaling the latent class-ness of an unknown document, not predicting class - uniform priors are more appropriate

Multinomial Bayes model of Class given a Word Class posterior probabilities

$$
P\left(c_{k} \mid w_{j}\right)=\frac{P\left(w_{j} \mid c_{k}\right) P\left(c_{k}\right)}{P\left(w_{j} \mid c_{k}\right) P\left(c_{k}\right)+P\left(w_{j} \mid c_{\neg k}\right) P\left(c_{\neg k}\right)}
$$

- This represents the posterior probability of membership in class k for word j
- Under certain conditions, this is identical to what LBG (2003) called $P_{\text {wr }}$
- Under those conditions, the LBG "wordscore" is the linear difference between $P\left(c_{k} \mid w_{j}\right)$ and $P\left(c_{\neg k} \mid w_{j}\right)$

"Certain conditions"

- The LBG approach required the identification not only of texts for each training class, but also "reference" scores attached to each training class
- Consider two "reference" scores s_{1} and s_{2} attached to two classes $k=1$ and $k=2$. Taking P_{1} as the posterior $P(k=1 \mid w=j)$ and P_{2} as $P(k=2 \mid w=j)$, A generalised score s_{j}^{*} for the word j is then

$$
\begin{aligned}
s_{j}^{*} & =s_{1} P_{1}+s_{2} P_{2} \\
& =s_{1} P_{1}+s_{2}\left(1-P_{1}\right) \\
& \left.=s_{1} P_{1}+s_{2}-s_{2} P_{1}\right) \\
& =P_{1}\left(s_{1}-s_{2}\right)+s_{2}
\end{aligned}
$$

Moving to the document level

- The "Naive" Bayes model of a joint document-level class posterior assumes conditional independence, to multiply the word likelihoods from a "test" document, to produce:

$$
P(c \mid d)=P(c) \prod_{j} \frac{P\left(w_{j} \mid c\right)}{P\left(w_{j}\right)}
$$

- This is why we call it "naive": because it (wrongly) assumes:
- conditional independence of word counts
- positional independence of word counts

Naive Bayes Classification Example

(From Manning, Raghavan and Schütze, Introduction to Information Retrieval)

- Table 13.1 Data for parameter estimation examples.

	docID	words in document	in $c=$ China?
training set	1	Chinese Beijing Chinese	yes
	2	Chinese Chinese Shanghai	yes
	3	Chinese Macao	yes
	4	Tokyo Japan Chinese	no
test set	5	Chinese Chinese Chinese Tokyo Japan	$?$

Naive Bayes Classification Example

Example 13.1: For the example in Table 13.1, the multinomial parameters we need to classify the test document are the priors $\hat{P}(c)=3 / 4$ and $\hat{P}(\bar{c})=1 / 4$ and the following conditional probabilities:

$$
\begin{aligned}
\hat{P}(\text { Chinese } \mid c) & =(5+1) /(8+6)=6 / 14=3 / 7 \\
\hat{P}(\text { Tokyo } \mid c)=\hat{P}(\text { Japan } \mid c) & =(0+1) /(8+6)=1 / 14 \\
\hat{P}(\text { Chinese } \mid \bar{c}) & =(1+1) /(3+6)=2 / 9 \\
\hat{P}(\text { Tokyo } \mid \bar{c})=\hat{P}(\text { Japan } \mid \bar{c}) & =(1+1) /(3+6)=2 / 9
\end{aligned}
$$

The denominators are $(8+6)$ and $(3+6)$ because the lengths of text $_{c}$ and text $\bar{c}_{\bar{c}}$ are 8 and 3, respectively, and because the constant B in Equation (13.7) is 6 as the vocabulary consists of six terms.

We then get:

$$
\begin{aligned}
& \hat{P}\left(c \mid d_{5}\right) \quad \propto 3 / 4 \cdot(3 / 7)^{3} \cdot 1 / 14 \cdot 1 / 14 \approx 0.0003 \\
& \hat{P}\left(\bar{c} \mid d_{5}\right) \quad \propto 1 / 4 \cdot(2 / 9)^{3} \cdot 2 / 9 \cdot 2 / 9 \approx 0.0001
\end{aligned}
$$

Thus, the classifier assigns the test document to $c=$ China. The reason for this classification decision is that the three occurrences of the positive indicator Chinese in d_{5} outweigh the occurrences of the two negative indicators Japan and Tokyo.

Naive Bayes with continuous covariates

```
library(e1071) # has a normal distribution Naive Bayes
# Congressional Voting Records of 1984 (abstentions treated as missing)
data(HouseVotes84, package="mlbench")
model <- naiveBayes(Class ~ ., data = HouseVotes84)
# predict the first 10 Congresspeople
data.frame(Predicted = predict(model, HouseVotes84[1:10,-1]),
    Actual = HouseVotes84[1:10,1],
    postPr = predict(model, HouseVotes84[1:10, -1], type = "raw"))
\#\# Predicted Actual postPr.democrat postPr.republican
\begin{tabular}{lrrrr} 
\#\# 1 & republican republican & \(1.029209 \mathrm{e}-07\) & \(9.999999 \mathrm{e}-01\) \\
\#\# 2 & republican & republican & \(5.820415 \mathrm{e}-08\) & \(9.999999 \mathrm{e}-01\) \\
\#\# 3 & republican & democrat & \(5.684937 \mathrm{e}-03\) & \(9.943151 \mathrm{e}-01\) \\
\#\# 4 & democrat & democrat & \(9.985798 \mathrm{e}-01\) & \(1.420152 \mathrm{e}-03\) \\
\#\# 5 & democrat & democrat & \(9.666720 \mathrm{e}-01\) & \(3.332802 \mathrm{e}-02\) \\
\#\# 6 & democrat & democrat & \(8.121430 \mathrm{e}-01\) & \(1.878570 \mathrm{e}-01\) \\
\#\# 7 & republican & democrat & \(1.751512 \mathrm{e}-04\) & \(9.998248 \mathrm{e}-01\) \\
\#\# 8 & republican republican & \(8.300100 \mathrm{e}-06\) & \(9.999917 \mathrm{e}-01\) \\
\#\# 9 & republican republican & \(8.277705 \mathrm{e}-08\) & \(9.999999 \mathrm{e}-01\) \\
\#\# 10 & democrat & democrat & \(1.000000 \mathrm{e}+00\) & \(5.029425 \mathrm{e}-11\)
\end{tabular}
```


Overall prediction performance

```
# now all of them: this is the resubstitution error 
##
## democrat republican
## democrat 238 13
## republican 29 155
prop.table(mytable, margin=1)
##
## democrat republican
## democrat 0.94820717 0.05179283
## republican 0.15760870 0.84239130
```


With Laplace smoothing

```
model <- naiveBayes(Class ~ ., data = HouseVotes84, laplace = 3)
(mytable <- table(predict(model, HouseVotes84[,-1]), HouseVotes84$Class))
##
## democrat republican
## democrat 237 12
## republican 30}15
prop.table(mytable, margin=1)
##
## democrat republican
## democrat 0.95180723 0.04819277
## republican 0.16129032 0.83870968
```


k-nearest neighbour

- A non-parametric method for classifying objects based on the training examples taht are closest in the feature space
- A type of instance-based learning, or "lazy learning" where the function is only approximated locally and all computation is deferred until classification
- An object is classified by a majority vote of its neighbors, with the object being assigned to the class most common amongst its k nearest neighbors (where k is a positive integer, usually small)
- Extremely simple: the only parameter that adjusts is k (number of neighbors to be used) - increasing k smooths the decision boundary

k-NN Example: Red or Blue?

$k=1$

$k=7$

$k=15$

Classifying amicus curiae briefs (Evans et al 2007)

```
## kNN classification
require(class)
## Loading required package: class
require(quantedaData)
## Loading required package: quantedaData
## Loading required package: quanteda
data(amicusCorpus)
# create a matrix of documents and features
amicusDfm <- dfm(amicusCorpus, ignoredFeatures=stopwords("english"),
    stem=TRUE, verbose=FALSE)
## note: using english builtin stopwords, but beware that one size may not fit
# threshold-based feature selection
amicusDfm <- trim(amicusDfm, minCount=10, minDoc=20)
## Features occurring less than 10 times: }992
## Features occurring in fewer than 20 documents: 11381
```


Classifying amicus curiae briefs (Evans et al 2007)

```
# tf-idf weighting
amicusDfm <- weight(amicusDfm, "tfidf")
# partition the training and test sets
train <- amicusDfm[!is.na(docvars(amicusCorpus, "trainclass")), ]
test <- amicusDfm[!is.na(docvars(amicusCorpus, "testclass")), ]
trainclass <- docvars(amicusCorpus, "trainclass") [1:4]
```


Classifying amicus curiae briefs (Evans et al 2007)

```
# classifier with k=1
classified <- knn(train, test, trainclass, k=1)
table(classified, docvars(amicusCorpus, "testclass")[-c(1:4)])
```

\#\#
\#\# classified AP AR
\#\# Pr 13
\#\#
R 673

Classifying amicus curiae briefs (Evans et al 2007)

```
# classifier with k=2
classified <- knn(train, test, trainclass, k=2)
table(classified, docvars(amicusCorpus, "testclass")[-c(1:4)])
```

\#\#
\#\# classified AP AR
\#\# P 933
\#\# R 1046

k-nearest neighbour issues: Dimensionality

- Distance usually relates to all the attributes and assumes all of them have the same effects on distance
- Misclassification may results from attributes not confirming to this assumption (sometimes called the "curse of dimensionality") - solution is to reduce the dimensions
- There are (many!) different metrics of distance

(Very) General overview to SVMs

- Generalization of maximal margin classifier
- The idea is to find the classification boundary that maximizes the distance to the marginal points

- Unfortunately MMC does not apply to cases with non-linear decision boundaries

No solution to this using support vector classifier

One way to solve this problem

- Basic idea: If a problem is non-linear, don't fit a linear model
- Instead, map the problem from the input space to a new (higher-dimensional) feature space
- Mapping is done through a non-linear transformation using suitably chosen basis functions
- the "kernel trick": using kernel functions to enable operations in the high-dimensional feature space without computing coordinates of that space, through computing inner products of all pairs of data in the feature space
- different kernel choices will produce different results (polynomial, linear, radial basis, etc.)
- Makes it possible to then use a linear model in the feature space

SVMs represent the data in a higher dimensional projection using a kernel, and bisect this using a hyperplane

Data is not linearly separable in the input space

Data is linearly separable in the feature space obtained by a kernel

This is only needed when no linear separation plane exists - so not needed in second of these

Different "kernels" can represent different decision boundaries

- This has to do with different projections of the data into higher-dimensional space
- The mathematics of this are complicated but solveable as forms of optimization problems - but the kernel choice is a user decision

Precision and recall

- Illustration framework

Precision and recall and related statistics

- Precision: $\frac{\text { true positives }}{\text { true positives }+ \text { false positives }}$
- Recall: $\frac{\text { true positives }}{\text { true positives }+ \text { false negatives }}$
- Accuracy: $\frac{\text { Correctly classified }}{\text { Total number of cases }}$
- $F 1=2 \frac{\text { Precision } \times \text { Recall }}{\text { Precision }+ \text { Recall }}$ (the harmonic mean of precision and recall)

Example: Computing precision/recall

Assume:

- We have a sample in which 80 outcomes are really positive (as opposed to negative, as in sentiment)
- Our method declares that 60 are positive
- Of the 60 declared positive, 45 are actually positive

Solution:

$$
\begin{aligned}
\text { Precision } & =(45 /(45+15))=45 / 60=0.75 \\
\text { Recall } & =(45 /(45+35))=45 / 80=0.56
\end{aligned}
$$

Accuracy?

add in the cells we can compute

Receiver Operating Characteristic (ROC) plot

