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How do we get ”true” condition?

I In some domains: through more expensive or extensive tests

I In social sciences: typically by expert annotation or coding

I A scheme should be tested and reported for its reliability



Inter-rater reliability

Different types are distinguished by the way the reliability data is
obtained.

Type Test Design Causes of Disagreements Strength

Stability test-retest intraobserver inconsistencies weakest

Reproduc-
ibility

test-test intraobserver inconsistencies +
interobserver disagreements

medium

Accuracy test-standard intraobserver inconsistencies +
interobserver disagreements +
deviations from a standard

strongest



Measures of agreement

I Percent agreement Very simple: (number of agreeing ratings)
/ (total ratings) * 100%

I Correlation
I (usually) Pearson’s r , aka product-moment correlation

I Formula: rAB = 1
n−1

∑n
i=1

(
Ai−Ā
sA

)(
Bi−B̄
sB

)

I May also be ordinal, such as Spearman’s rho or Kendall’s tau-b
I Range is [0,1]

I Agreement measures
I Take into account not only observed agreement, but also

agreement that would have occured by chance
I Cohen’s κ is most common
I Krippendorf’s α is a generalization of Cohen’s κ
I Both range from [0,1]



Reliability data matrixes

Example here used binary data (from Krippendorff)

Article: 1 2 3 4 5 6 7 8 9 10

Coder A 1 1 0 0 0 0 0 0 0 0
Coder B 0 1 1 0 0 1 0 1 0 0

I A and B agree on 60% of the articles: 60% agreement

I Correlation is (approximately) 0.10

I Observed disagreement: 4

I Expected disagreement (by chance): 4.4211

I Krippendorff’s α = 1− Do
De

= 1− 4
4.4211 = 0.095

I Cohen’s κ (nearly) identical



Naive Bayes classification

I The following examples refer to “words” and “documents”
but can be thought of as generic “features” and “cases”

I We will being with a discrete case, and then cover continuous
feature values

I Objective is typically MAP: identification of the maximum a
posteriori class probability



Multinomial Bayes model of Class given a Word

Consider J word types distributed across I documents, each
assigned one of K classes.

At the word level, Bayes Theorem tells us that:

P(ck |wj) =
P(wj |ck)P(ck)

P(wj)

For two classes, this can be expressed as

=
P(wj |ck)P(ck)

P(wj |ck)P(ck) + P(wj |c¬k)P(c¬k)
(1)



Multinomial Bayes model of Class given a Word
Class-conditional word likelihoods

P(ck |wj) =
P(wj |ck)P(ck)

P(wj |ck)P(ck) + P(wj |c¬k)P(c¬k)

I The word likelihood within class

I The maximum likelihood estimate is simply the proportion of
times that word j occurs in class k, but it is more common to
use Laplace smoothing by adding 1 to each oberved count
within class



Multinomial Bayes model of Class given a Word
Word probabilities

P(ck |wj) =
P(wj |ck)P(ck)

P(wj)

I This represents the word probability from the training corpus

I Usually uninteresting, since it is constant for the training
data, but needed to compute posteriors on a probability scale



Multinomial Bayes model of Class given a Word
Class prior probabilities

P(ck |wj) =
P(wj |ck)P(ck)

P(wj |ck)P(ck) + P(wj |c¬k)P(c¬k)

I This represents the class prior probability

I Machine learning typically takes this as the document
frequency in the training set

I This approach is flawed for scaling, however, since we are
scaling the latent class-ness of an unknown document, not
predicting class – uniform priors are more appropriate



Multinomial Bayes model of Class given a Word
Class posterior probabilities

P(ck |wj) =
P(wj |ck)P(ck)

P(wj |ck)P(ck) + P(wj |c¬k)P(c¬k)

I This represents the posterior probability of membership in
class k for word j

I Under certain conditions, this is identical to what LBG (2003)
called Pwr

I Under those conditions, the LBG “wordscore” is the linear
difference between P(ck |wj) and P(c¬k |wj)



“Certain conditions”

I The LBG approach required the identification not only of
texts for each training class, but also “reference” scores
attached to each training class

I Consider two “reference” scores s1 and s2 attached to two
classes k = 1 and k = 2. Taking P1 as the posterior
P(k = 1|w = j) and P2 as P(k = 2|w = j), A generalised
score s∗j for the word j is then

s∗j = s1P1 + s2P2

= s1P1 + s2(1− P1)

= s1P1 + s2 − s2P1)

= P1(s1 − s2) + s2



Moving to the document level

I The “Naive” Bayes model of a joint document-level class
posterior assumes conditional independence, to multiply the
word likelihoods from a “test” document, to produce:

P(c|d) = P(c)
∏

j

P(wj |c)

P(wj)

I This is why we call it “naive”: because it (wrongly) assumes:
I conditional independence of word counts
I positional independence of word counts



Naive Bayes Classification Example

(From Manning, Raghavan and Schütze, Introduction to
Information Retrieval)

Online edition (c)�2009 Cambridge UP

13.2 Naive Bayes text classification 261

! Table 13.1 Data for parameter estimation examples.
docID words in document in c = China?

training set 1 Chinese Beijing Chinese yes
2 Chinese Chinese Shanghai yes
3 Chinese Macao yes
4 Tokyo Japan Chinese no

test set 5 Chinese Chinese Chinese Tokyo Japan ?

! Table 13.2 Training and test times for NB.
mode time complexity
training Θ(|D|Lave + |C||V|)
testing Θ(La + |C|Ma) = Θ(|C|Ma)

We have now introduced all the elements we need for training and apply-
ing an NB classifier. The complete algorithm is described in Figure 13.2.

✎ Example 13.1: For the example in Table 13.1, the multinomial parameters we
need to classify the test document are the priors P̂(c) = 3/4 and P̂(c) = 1/4 and the
following conditional probabilities:

P̂(Chinese|c) = (5 + 1)/(8 + 6) = 6/14 = 3/7

P̂(Tokyo|c) = P̂(Japan|c) = (0 + 1)/(8 + 6) = 1/14

P̂(Chinese|c) = (1 + 1)/(3 + 6) = 2/9

P̂(Tokyo|c) = P̂(Japan|c) = (1 + 1)/(3 + 6) = 2/9

The denominators are (8 + 6) and (3 + 6) because the lengths of textc and textc are 8
and 3, respectively, and because the constant B in Equation (13.7) is 6 as the vocabu-
lary consists of six terms.

We then get:

P̂(c|d5) ∝ 3/4 · (3/7)3 · 1/14 · 1/14 ≈ 0.0003.

P̂(c|d5) ∝ 1/4 · (2/9)3 · 2/9 · 2/9 ≈ 0.0001.

Thus, the classifier assigns the test document to c = China. The reason for this clas-
sification decision is that the three occurrences of the positive indicator Chinese in d5
outweigh the occurrences of the two negative indicators Japan and Tokyo.

What is the time complexity of NB? The complexity of computing the pa-
rameters is Θ(|C||V|) because the set of parameters consists of |C||V| con-
ditional probabilities and |C| priors. The preprocessing necessary for com-
puting the parameters (extracting the vocabulary, counting terms, etc.) can
be done in one pass through the training data. The time complexity of this
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Naive Bayes with continuous covariates

library(e1071) # has a normal distribution Naive Bayes

# Congressional Voting Records of 1984 (abstentions treated as missing)

data(HouseVotes84, package="mlbench")

model <- naiveBayes(Class ~ ., data = HouseVotes84)

# predict the first 10 Congresspeople

data.frame(Predicted = predict(model, HouseVotes84[1:10,-1]),

Actual = HouseVotes84[1:10,1],

postPr = predict(model, HouseVotes84[1:10, -1], type = "raw"))

## Predicted Actual postPr.democrat postPr.republican

## 1 republican republican 1.029209e-07 9.999999e-01

## 2 republican republican 5.820415e-08 9.999999e-01

## 3 republican democrat 5.684937e-03 9.943151e-01

## 4 democrat democrat 9.985798e-01 1.420152e-03

## 5 democrat democrat 9.666720e-01 3.332802e-02

## 6 democrat democrat 8.121430e-01 1.878570e-01

## 7 republican democrat 1.751512e-04 9.998248e-01

## 8 republican republican 8.300100e-06 9.999917e-01

## 9 republican republican 8.277705e-08 9.999999e-01

## 10 democrat democrat 1.000000e+00 5.029425e-11



Overall prediction performance

# now all of them: this is the resubstitution error

(mytable <- table(predict(model, HouseVotes84[,-1]), HouseVotes84$Class))

##

## democrat republican

## democrat 238 13

## republican 29 155

prop.table(mytable, margin=1)

##

## democrat republican

## democrat 0.94820717 0.05179283

## republican 0.15760870 0.84239130



With Laplace smoothing

model <- naiveBayes(Class ~ ., data = HouseVotes84, laplace = 3)

(mytable <- table(predict(model, HouseVotes84[,-1]), HouseVotes84$Class))

##

## democrat republican

## democrat 237 12

## republican 30 156

prop.table(mytable, margin=1)

##

## democrat republican

## democrat 0.95180723 0.04819277

## republican 0.16129032 0.83870968



k-nearest neighbour

I A non-parametric method for classifying objects based on the
training examples taht are closest in the feature space

I A type of instance-based learning, or “lazy learning” where
the function is only approximated locally and all computation
is deferred until classification

I An object is classified by a majority vote of its neighbors, with
the object being assigned to the class most common amongst
its k nearest neighbors (where k is a positive integer, usually
small)

I Extremely simple: the only parameter that adjusts is k
(number of neighbors to be used) - increasing k smooths the
decision boundary



k-NN Example: Red or Blue?



k = 1



k = 7



k = 15



Classifying amicus curiae briefs (Evans et al 2007)

## kNN classification

require(class)

## Loading required package: class

require(quantedaData)

## Loading required package: quantedaData

## Loading required package: quanteda

data(amicusCorpus)

# create a matrix of documents and features

amicusDfm <- dfm(amicusCorpus, ignoredFeatures=stopwords("english"),

stem=TRUE, verbose=FALSE)

## note: using english builtin stopwords, but beware that one size may not fit all.

# threshold-based feature selection

amicusDfm <- trim(amicusDfm, minCount=10, minDoc=20)

## Features occurring less than 10 times: 9920

## Features occurring in fewer than 20 documents: 11381



Classifying amicus curiae briefs (Evans et al 2007)

# tf-idf weighting

amicusDfm <- weight(amicusDfm, "tfidf")

# partition the training and test sets

train <- amicusDfm[!is.na(docvars(amicusCorpus, "trainclass")), ]

test <- amicusDfm[!is.na(docvars(amicusCorpus, "testclass")), ]

trainclass <- docvars(amicusCorpus, "trainclass")[1:4]



Classifying amicus curiae briefs (Evans et al 2007)

# classifier with k=1

classified <- knn(train, test, trainclass, k=1)

table(classified, docvars(amicusCorpus, "testclass")[-c(1:4)])

##

## classified AP AR

## P 13 6

## R 6 73



Classifying amicus curiae briefs (Evans et al 2007)

# classifier with k=2

classified <- knn(train, test, trainclass, k=2)

table(classified, docvars(amicusCorpus, "testclass")[-c(1:4)])

##

## classified AP AR

## P 9 33

## R 10 46



k-nearest neighbour issues: Dimensionality

I Distance usually relates to all the attributes and assumes all
of them have the same effects on distance

I Misclassification may results from attributes not confirming to
this assumption (sometimes called the “curse of
dimensionality”) – solution is to reduce the dimensions

I There are (many!) different metrics of distance



(Very) General overview to SVMs

I Generalization of maximal margin classifier

I The idea is to find the classification boundary that maximizes
the distance to the marginal points

Having done this, we can once again divide the number of misclassifications by the total number of 
training examples to get an estimate of the true generalization performance.  The point is that since we have 
avoided checking the performance of the classifier on examples that the algorithm had already “seen”, we 
have calculated a far more meaningful measure of classifier quality.  Commonly used values for n are 3 and 
10 leading to so called 3-fold and 10-fold cross-validation. 

Now, while it is nice to have some idea of how well our decision function will generalize, we really 
want to use this measure to guide the model selection process.  If there are only, say, two parameters to 
choose for the classification algorithm, it is common to simply evaluate the generalization performance 
(using cross validation) for all combinations of the two parameters, over some reasonable range.  As the 
number of parameters increases, however, this soon becomes infeasible due to the excessive number of 
parameter combinations.  Fortunately one can often get away with just two parameters for the SVM 
algorithm, making this relatively straight-forward model selection methodology widely applicable and quite 
effective on real world problems. 

Now that we have a basic understanding of what supervised learning algorithms can do, as well as 
roughly how they should be used and evaluated, it is time to take a peek under the hood of one in particular, 
the SVM.  While the main underlying idea of the SVM is quite intuitive, it will be necessary to delve into 
some mathematical details in order to better appreciate why the method has been so successful. 
 

Main Thrust of the Chapter 
 
The SVM is a supervised learning algorithm that infers from a set of labeled examples a function that takes 
new examples as input, and produces predicted labels as output.  As such the output of the algorithm is a 
mathematical function that is defined on the space from which our examples are taken, and takes on one of 
two values at all points in the space, corresponding to the two class labels that are considered in binary 
classification.  One of the theoretically appealing things about the SVM is that the key underlying idea is in 
fact extremely simple.  Indeed, the standard derivation of the SVM algorithm begins with possibly the 
simplest class of decision functions: linear ones.  To illustrate what is meant by this, Figure 2 consists of 
three linear decision functions that happen to be correctly classifying some simple 2D training sets. 

 

 
 

Figure 2: A simple 2D classification task, to separate the black dots from the circles. Three feasible but 
different linear decision functions are depicted, whereby the classifier predicts that any new samples in the 
gray region are black dots, and those in the white region are circles.  Which is the best decision function 

and why? 
 
Linear decision functions consist of a decision boundary that is a hyperplane (a line in 2D, plane in 3D, etc) 
separating the two different regions of the space.  Such a decision function can be expressed by a 
mathematical function of an input vector x, the value of which is the predicted label for x (either +1 or -1).  
The linear classifier can therefore be written as 
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I Unfortunately MMC does not apply to cases with non-linear
decision boundaries



No solution to this using support vector classifier

9.3 Support Vector Machines 349
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FIGURE 9.8. Left: The observations fall into two classes, with a non-linear
boundary between them. Right: The support vector classifier seeks a linear bound-
ary, and consequently performs very poorly.

depends on the mean of all of the observations within each class, as well as
the within-class covariance matrix computed using all of the observations.
In contrast, logistic regression, unlike LDA, has very low sensitivity to ob-
servations far from the decision boundary. In fact we will see in Section 9.5
that the support vector classifier and logistic regression are closely related.

9.3 Support Vector Machines

We first discuss a general mechanism for converting a linear classifier into
one that produces non-linear decision boundaries. We then introduce the
support vector machine, which does this in an automatic way.

9.3.1 Classification with Non-linear Decision Boundaries

The support vector classifier is a natural approach for classification in the
two-class setting, if the boundary between the two classes is linear. How-
ever, in practice we are sometimes faced with non-linear class boundaries.
For instance, consider the data in the left-hand panel of Figure 9.8. It is
clear that a support vector classifier or any linear classifier will perform
poorly here. Indeed, the support vector classifier shown in the right-hand
panel of Figure 9.8 is useless here.

In Chapter 7, we are faced with an analogous situation. We see there
that the performance of linear regression can suffer when there is a non-
linear relationship between the predictors and the outcome. In that case,
we consider enlarging the feature space using functions of the predictors,



One way to solve this problem

I Basic idea: If a problem is non-linear, don’t fit a linear model

I Instead, map the problem from the input space to a new
(higher-dimensional) feature space

I Mapping is done through a non-linear transformation using
suitably chosen basis functions

I the “kernel trick”: using kernel functions to enable operations
in the high-dimensional feature space without computing
coordinates of that space, through computing inner products
of all pairs of data in the feature space

I different kernel choices will produce different results
(polynomial, linear, radial basis, etc.)

I Makes it possible to then use a linear model in the feature
space



SVMs represent the data in a higher dimensional projection using a
kernel, and bisect this using a hyperplane

Case 3: Not linearly separable data;
Kernel trick

58

Gene 2

Gene 1

Tumor

Normal

Tumor

Normal?

?

Data is not linearly separable 
in the input space

Data is linearly separable in the 
feature space obtained by a kernel

kernel

)

HR o) N:



This is only needed when no linear separation plane exists - so not
needed in second of these

78

Need for model selection for SVMs

Gene 2

Gene 1

Tumor

Normal

• It is impossible to find a linear SVM classifier 
that separates tumors from normals! 
• Need a non-linear SVM classifier, e.g. SVM 

with polynomial kernel of degree 2 solves 
this problem without errors.

Gene 2

Gene 1

Tumor

Normal

• We should not apply a non-linear SVM 
classifier while we can perfectly solve 
this problem using a linear SVM 
classifier!



Different “kernels” can represent different decision
boundaries

I This has to do with different projections of the data into
higher-dimensional space

I The mathematics of this are complicated but solveable as
forms of optimization problems - but the kernel choice is a
user decision 9.3 Support Vector Machines 353
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FIGURE 9.9. Left: An SVM with a polynomial kernel of degree 3 is applied to
the non-linear data from Figure 9.8, resulting in a far more appropriate decision
rule. Right: An SVM with a radial kernel is applied. In this example, either kernel
is capable of capturing the decision boundary.

In (9.24), γ is a positive constant. The right-hand panel of Figure 9.9 shows
an example of an SVM with a radial kernel on this non-linear data; it also
does a good job in separating the two classes.

How does the radial kernel (9.24) actually work? If a given test obser-
vation x∗ = (x∗

1 . . . x∗
p)

T is far from a training observation xi in terms of
Euclidean distance, then

∑p
j=1(x

∗
j −xij)

2 will be large, and so K(x∗, xi) =

exp(−γ
∑p

j=1(x
∗
j − xij)

2) will be very tiny. This means that in (9.23), xi

will play virtually no role in f(x∗). Recall that the predicted class label
for the test observation x∗ is based on the sign of f(x∗). In other words,
training observations that are far from x∗ will play essentially no role in
the predicted class label for x∗. This means that the radial kernel has very
local behavior, in the sense that only nearby training observations have an
effect on the class label of a test observation.

What is the advantage of using a kernel rather than simply enlarging
the feature space using functions of the original features, as in (9.16)? One
advantage is computational, and it amounts to the fact that using kernels,
one need only compute K(xi, x

′
i) for all

(
n
2

)
distinct pairs i, i′. This can be

done without explicitly working in the enlarged feature space. This is im-
portant because in many applications of SVMs, the enlarged feature space
is so large that computations are intractable. For some kernels, such as the
radial kernel (9.24), the feature space is implicit and infinite-dimensional,
so we could never do the computations there anyway!



Precision and recall

I Illustration framework

Positive Negative

Positive True Positive False Positive
(Type I error)

Negative False Negative
(Type II error) True Negative

True condition

Prediction



Precision and recall and related statistics

I Precision: true positives
true positives + false positives

I Recall: true positives
true positives + false negatives

I Accuracy: Correctly classified
Total number of cases

I F1 = 2 Precision × Recall
Precision + Recall

(the harmonic mean of precision and recall)



Example: Computing precision/recall

Assume:

I We have a sample in which 80 outcomes are really positive (as
opposed to negative, as in sentiment)

I Our method declares that 60 are positive

I Of the 60 declared positive, 45 are actually positive

Solution:

Precision = (45/(45 + 15)) = 45/60 = 0.75

Recall = (45/(45 + 35)) = 45/80 = 0.56



Accuracy?

Positive Negative

Positive 45 60

Negative

80

True condition

Prediction



add in the cells we can compute

Positive Negative

Positive 45 15 60

Negative 35

80

True condition

Prediction



Receiver Operating Characteristic (ROC) plot
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