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Classification and prediction as goals

I Machine learning focuses on identifying classes
(classification), while social science is typically interested”

I estimating marginal effects
I measuring things (latent trait scaling)

I Regression analysis is the workhorse of social science statistical
analysis, but can also be used to predict out of sample

I “Statistical learning” view is that regression is a “supervised”
machine learning method for continuously-valued outcomes



Supervised v. unsupervised methods compared

I Two different approaches:
I Supervised methods require a training set that exmplify

constrasting classes, identified by the researcher
I Unsupervised methods scale differences and identify patterns,

without requiring a training step

I Relative advantage of supervised methods: You set the input
dimensions

I Relative disadvantage of supervised methods:
You need to “know” in advance the dimensions being scaled,
in order to train or fit the model



Supervised v. unsupervised methods: Examples

I General examples:
I Supervised: Regression, logistic regression, Naive Bayes,

k-Nearest Neighbor, Support Vector Machines (SVM)
I Unsupervised: correspondence analysis, IRT models, factor

analytic approaches

I Lots of applications in text analysis
I Supervised: Wordscores (LBG 2003); SVMs (Yu, Kaufman and

Diermeier 2008); Naive Bayes (Evans et al 2007)
I Unsupervised “Wordfish” (Slapin and Proksch 2008);

Correspondence analysis (Schonhardt-Bailey 2008);
two-dimensional IRT (Monroe and Maeda 2004)



How do we get ”true” condition?

I For regression examples: We have a sample with a
continuously-valued dependent variable

I In some domains: through more expensive or extensive tests
I May also be through expert annotation or coding

I A scheme should be tested and reported for its reliability



Generalization and overfitting

I Generalization: A classifier or a regression algorithm learns to
correctly predict output from given inputs not only in
previously seen samples but also in previously unseen samples

I Overfitting: A classifier or a regression algorithm learns to
correctly predict output from given inputs in previously seen
samples but fails to do so in previously unseen samples. This
causes poor prediction/generalization



How model fit is evaluated

I For discretely-valued outcomes (class prediction): Goal is to
maximize the frontier of precise identification of true condition
with accurate recall, defined in terms of false positives and
false negatives

I will define formally later

I For continuously-valued outcomes: minimize Root Mean
Squared Error (RMSE)



Regression as a prediction method

I Training step: fitting a model to data for which the outcome
variable Yi is known

I Test step: predicting out of sample Yi for a new configuration
of data input values Xi

I Evaluation: based on RMSE, or average√∑
(Yi − Ŷi )



Example
par(mar=c(4,4,1,1))

x <- c(0,3,1,0,6,5,3,4,10,8)

y <- c(12,13,15,19,26,27,29,31,40,48)

plot(x, y, xlab="Number of prior convictions (X)",

ylab="Sentence length (Y)", pch=19)

abline(h=c(10,20,30,40), col="grey70")
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Least squares formulas

For the three parameters (simple regression):

I the regression coefficient:

β̂1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2

I the intercept:
β̂0 = ȳ − β̂1x̄

I and the residual variance σ2:

σ̂2 =
1

n − 2

∑
[yi − (β̂0 + β̂1xi )]2



Least squares formulas continued

Things to note:

I the prediction line is ŷ = β̂0 + β̂1x

I the value ŷi = β̂0 + β̂1xi is the predicted value for xi
I the residual is ei = yi − ŷi
I The residual sum of squares (RSS) =

∑
i e

2
i

I The estimate for σ2 is the same as

σ̂2 = RSS/(n − 2)



Example to show fomulas in R
> x <- c(0,3,1,0,6,5,3,4,10,8)

> y <- c(12,13,15,19,26,27,29,31,40,48)

> (data <- data.frame(x, y, xdev=(x-mean(x)), ydev=(y-mean(y)),

+ xdevydev=((x-mean(x))*(y-mean(y))),

+ xdev2=(x-mean(x))^2,

+ ydev2=(y-mean(y))^2))

x y xdev ydev xdevydev xdev2 ydev2

1 0 12 -4 -14 56 16 196

2 3 13 -1 -13 13 1 169

3 1 15 -3 -11 33 9 121

4 0 19 -4 -7 28 16 49

5 6 26 2 0 0 4 0

6 5 27 1 1 1 1 1

7 3 29 -1 3 -3 1 9

8 4 31 0 5 0 0 25

9 10 40 6 14 84 36 196

10 8 48 4 22 88 16 484

> (SP <- sum(data$xdevydev))

[1] 300

> (SSx <- sum(data$xdev2))

[1] 100

> (SSy <- sum(data$ydev2))

[1] 1250

> (b1 <- SP / SSx)

[1] 3

> (b0 <- mean(y) - b1*mean(x))

[1] 14



From observed to “predicted” relationship

I In the above example, β̂0 = 14, β̂1 = 3

I This linear equation forms the regression line

I The regression line always passes through two points:
I the point (x = 0, y = β̂0)
I the point (x̄ , ȳ) (the average X predicts the average Y )

I The residual sum of squares (RSS) =
∑

i e
2
i

I The regression line is that which minimizes the RSS



Ordinary Least Squares (OLS)

I Objective: minimize
∑

e2
i =

∑
(Yi − Ŷi )

2, where

I Ŷi = b0 + b1Xi

I error ei = (Yi − Ŷi )

b =

∑
(Xi − X̄ )(Yi − Ȳ )∑

(Xi − X̄ )

=

∑
XiYi∑
X 2
i

I The intercept is: b0 = Ȳ − b1X̄



OLS rationale

I Formulas are very simple

I Closely related to ANOVA (sums of squares decomposition)

I Predicted Y is sample mean when Pr(Y |X ) =Pr(Y )
I In the special case where Y has no relation to X , b1 = 0, then

OLS fit is simply Ŷ = b0

I Why? Because b0 = Ȳ − b1X̄ , so Ŷ = Ȳ
I Prediction is then sample mean when X is unrelated to Y

I Since OLS is then an extension of the sample mean, it has the
same attractice properties (efficiency and lack of bias)

I Alternatives exist but OLS has generally the best properties
when assumptions are met



OLS in matrix notation

I Formula for coefficient β:

Y = Xβ + ε

X ′Y = X ′Xβ + X ′ε

X ′Y = X ′Xβ + 0

(X ′X )−1X ′Y = β + 0

β = (X ′X )−1X ′Y

I Formula for variance-covariance matrix: σ2(X ′X )−1

I In simple case where y = β0 + β1 ∗ x , this gives
σ2/

∑
(xi − x̄)2 for the variance of β1

I Note how increasing the variation in X will reduce the variance
of β1



The “hat” matrix

I The hat matrix H is defined as:

β̂ = (X ′X )−1X ′y

X β̂ = X (X ′X )−1X ′y

ŷ = Hy

I H = X (X ′X )−1X ′ is called the hat-matrix

I Other important quantities, such as ŷ ,
∑

e2
i (RSS) can be

expressed as functions of H

I Corrections for heteroskedastic errors (“robust” standard
errors) involve manipulating H



Some important OLS properties to understand

Applies to y = α + βx + ε

I If β = 0 and the only regressor is the intercept, then this is
the same as regressing y on a column of ones, and hence
α = ȳ — the mean of the observations

I If α = 0 so that there is no intercept and one explanatory
variable x , then β =

∑
xy∑
x2

I If there is an intercept and one explanatory variable, then

β =

∑
i (xi − x̄)(yi − ȳ)∑

(xi − x̄)2

=

∑
i (xi − x̄)yi∑
(xi − x̄)2



Some important OLS properties (cont.)

I If the observations are expressed as deviations from their
means, y∗ = y − ȳ and x∗ = x − x̄ , then β =

∑
x∗y∗/

∑
x∗2

I The intercept can be estimated as ȳ − βx̄ . This implies that
the intercept is estimated by the value that causes the sum of
the OLS residuals to equal zero.

I The mean of the ŷ values equals the mean y values – together
with previous properties, implies that the OLS regression line
passes through the overall mean of the data points



Normally distributed errors



OLS in R

> dail <- read.dta("dail2002.dta")

> mdl <- lm(votes1st ~ spend_total*incumb + minister, data=dail)

> summary(mdl)

Call:

lm(formula = votes1st ~ spend_total * incumb + minister, data = dail)

Residuals:

Min 1Q Median 3Q Max

-5555.8 -979.2 -262.4 877.2 6816.5

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 469.37438 161.54635 2.906 0.00384 **

spend_total 0.20336 0.01148 17.713 < 2e-16 ***

incumb 5150.75818 536.36856 9.603 < 2e-16 ***

minister 1260.00137 474.96610 2.653 0.00826 **

spend_total:incumb -0.14904 0.02746 -5.428 9.28e-08 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 1796 on 457 degrees of freedom

(2 observations deleted due to missingness)

Multiple R-squared: 0.6672, Adjusted R-squared: 0.6643

F-statistic: 229 on 4 and 457 DF, p-value: < 2.2e-16



OLS in Stata

. use dail2002

(Ireland 2002 Dail Election - Candidate Spending Data)

. gen spendXinc = spend_total * incumb

(2 missing values generated)

. reg votes1st spend_total incumb minister spendXinc

Source | SS df MS Number of obs = 462

-------------+------------------------------ F( 4, 457) = 229.05

Model | 2.9549e+09 4 738728297 Prob > F = 0.0000

Residual | 1.4739e+09 457 3225201.58 R-squared = 0.6672

-------------+------------------------------ Adj R-squared = 0.6643

Total | 4.4288e+09 461 9607007.17 Root MSE = 1795.9

------------------------------------------------------------------------------

votes1st | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

spend_total | .2033637 .0114807 17.71 0.000 .1808021 .2259252

incumb | 5150.758 536.3686 9.60 0.000 4096.704 6204.813

minister | 1260.001 474.9661 2.65 0.008 326.613 2193.39

spendXinc | -.1490399 .0274584 -5.43 0.000 -.2030003 -.0950794

_cons | 469.3744 161.5464 2.91 0.004 151.9086 786.8402

------------------------------------------------------------------------------



Sums of squares (ANOVA)

TSS Total sum of squares
∑

(yi − ȳ)2

ESS Estimation or Regression sum of squares
∑

(ŷi − ȳ)2

RSS Residual sum of squares
∑

e2
i =

∑
(ŷi − yi )

2

The key to remember is that TSS = ESS + RSS



Examining the sums of squares

> yhat <- mdl$fitted.values # uses the lm object mdl from previous

> ybar <- mean(mdl$model[,1])

> y <- mdl$model[,1] # can't use dail$votes1st since diff N

> TSS <- sum((y-ybar)^2)

> ESS <- sum((yhat-ybar)^2)

> RSS <- sum((yhat-y)^2)

> RSS

[1] 1473917120

> sum(mdl$residuals^2)

[1] 1473917120

> (r2 <- ESS/TSS)

[1] 0.6671995

> (adjr2 <- (1 - (1-r2)*(462-1)/(462-4-1)))

[1] 0.6642865

> summary(mdl)$r.squared # note the call to summary()

[1] 0.6671995

> RSS/457

[1] 3225202

> sqrt(RSS/457)

[1] 1795.885

> summary(mdl)$sigma

[1] 1795.885



Regression model return values

Here we will talk about the quantities returned with the lm()

command and lm class objects.



Uncertainty in regression models: the linear case revisited

I Suppose we regress y on X to produce b = (X ′X )−1X ′y

I Then we set explanatory variables to new values X p to predict
Y p

I The prediction Y p will have two forms of uncertainty:

1. estimation uncertainty that can be reduced by increasing the
sample size. Estimated a ŷp = X pb and depends on sample
size through b

2. fundamental variability comes from variability in the dependent
variable around the expected value E(Y p) = µ = X pβ – even
if we knew the true β



Estimation uncertainty and fundamental variability

I We can decompose this as follows:

Y p = X pb + εp

Var(Y p) = Var(X pb) + Var(εp)

= X pVar(b)(X p)′ + σ2I

= σ2X p((X p)′X p)−1 + σ2I

= estimation uncertainty + fundamental variability

I It can be shown that the distribution of Ŷ p is:

Ŷ p ∼ N(X pβ,X pVar(b)(X p)′)

I and that the unconditional distribution of Y p is:

Y p ∼ N(X pβ, X p Var(b)(X p)′ + σ2I )



Confidence intervals for predictions

I For any set of explanatory variables x0, the predicted response
is ŷ0 = x ′0β̂

I But this prediction also comes with uncertainty, and by
extension, with a confidence interval

I Two types:
I predictions of future observations: based on the prediction plus

the variance of ε (Note: this is what we usually want)

ŷ0 ± t
α/2
n−k−1σ̂

√
1 + x ′o(X ′X )−1x0

I prediction of mean response: the average value of a y0 with the
characteristics x0 – only takes into account the variance of β̂

ŷ0 ± t
α/2
n−k−1σ̂

√
x ′0(X ′X )−1x0



Confidence intervals for predictions in R

> summary(m1)$coeff

Estimate Std. Error t value Pr(>|t|)

(Intercept) 464.5955332 162.59752848 2.857335 4.466694e-03

spend_total 0.2041449 0.01155236 17.671273 1.154515e-53

incumb 4493.3251289 478.80828470 9.384393 2.962201e-19

spend_total:incumb -0.1068943 0.02254283 -4.741832 2.832798e-06

> fivenum(dail$spend_total) # what is typical spending profile

[1] 0.00 5927.32 14699.12 20812.66 51971.28

> x0 <- c(1, 75000, 1, 75000) # set some predictor values

> (y0 <- sum(x0*coef(m1))) # compute predicted response

[1] 12251.71

> fivenum(dail$votes1st) # how typical is this response?

[1] 19.0 1151.5 3732.0 6432.0 14742.0

> quantile(dail$votes1st, .99, na.rm=T) # versus 99th percentile

99%

11138.44

> x0.df <- data.frame(incumb=1, spend_total=75000)

> predict(m1, x0.df)

1

12251.71

> predict(m1, x0.df, interval="confidence")

fit lwr upr

1 12251.71 10207.33 14296.09

> predict(m1, x0.df, interval="prediction")

fit lwr upr

1 12251.71 8153.068 16350.36



Fundamental and estimation variability for non-linear forms
I For well-known cases, we known both the expectation and the

fundamental variability, e.g.
I Poisson E (Y ) = eXβ , Var(Y ) = λ
I logistic E (Y ) = 1

1+e−Xβ , Var(Y ) = π(1− π)

I Calculating the estimation variability is harder, but can be
done using a linear approximation from the Taylor series. The
Taylor series approximation of ŷp = g(b) is:

ŷp = g(b) = g(β) + g ′(β)(b − β) + · · ·

where g ′(β) is the first derivative of the functional form g(β)
with respect to β

I If we drop all but the first two terms, then

Var(Ŷ p) ≈ Var[g(β)] + Var[g ′(β)(b − β)]

= g ′(β)Var(b)g ′(β)′

I This is known as the Delta method for calculating standard
errors of predictions



Precision and recall

I Illustration framework

Positive Negative

Positive True Positive False Positive
(Type I error)

Negative False Negative
(Type II error) True Negative

True condition

Prediction



Precision and recall and related statistics

I Precision: true positives
true positives + false positives

I Recall: true positives
true positives + false negatives

I Accuracy: Correctly classified
Total number of cases

I F1 = 2 Precision × Recall
Precision + Recall

(the harmonic mean of precision and recall)



Example: Computing precision/recall

Assume:

I We have a sample in which 80 outcomes are really positive (as
opposed to negative, as in sentiment)

I Our method declares that 60 are positive

I Of the 60 declared positive, 45 are actually positive

Solution:

Precision = (45/(45 + 15)) = 45/60 = 0.75

Recall = (45/(45 + 35)) = 45/80 = 0.56



Accuracy?

Positive Negative

Positive 45 60

Negative

80

True condition

Prediction



add in the cells we can compute

Positive Negative

Positive 45 15 60

Negative 35

80

True condition

Prediction



but need True Negatives and N to compute accuracy

Positive Negative

Positive 45 15 60

Negative 35 ???

80

True condition

Prediction



assume 10 True Negatives:

Positive Negative

Positive 45 15 60

Negative 35 10 45

80 25 105

True condition

Prediction

Accuracy = (45 + 10)/105 = 0.52

F1 = 2 ∗ (0.75 ∗ 0.56)/(0.75 + 0.56) = 0.64



now assume 100 True Negatives:

Positive Negative

Positive 45 15 60

Negative 35 100 135

80 115 195

True condition

Prediction

Accuracy = (45 + 100)/195 = 0.74

F1 = 2 ∗ (0.75 ∗ 0.56)/(0.75 + 0.56) = 0.64



Receiver Operating Characteristic (ROC) plot
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Estimating uncertainty through simulation

I King, Timz, and Wittenberg (2000) propose using statistical
simulation to estimate uncertainty

I Notation:

stochastic component Yi ∼ f (θi , α)
systmatic component θi = g(Xi , β)

For example in a linear-normal model,
Yi = N(µi , σ

2) and µi = Xiβ
simulated parameter vector γ̂ = vec(β̂, α̂)

The central limit theorem tells us we can simulate γ as

γ̃ ∼ N(γ̂, V̂ (γ̂))



Simulating predicted values

  ,  ,   

multivariate normal distribution with mean equal to   ̂γ
and variance equal to   

ˆ (ˆ )V γ .1 Using our notation,

  
˜ ~ ˆ , ˆ (ˆ )γ γ γN V( ) . (4)

Thus, we can obtain one simulation of γ by following
these steps:

1. Estimate the model by running the usual software
program (which usually maximizes a likelihood func-
tion), and record the point estimates   ̂γ  and variance
matrix   

ˆ ( ˆ )V γ .
2. Draw one value of the vector γ from the multivariate

normal distribution in Equation 4. Denote the   ̃γ =
  vec(˜, ˜)β α .

Repeat the second step, say, M = 1000 times to obtain
1000 draws of the main and ancillary parameters.

If we knew the elements of γ perfectly, the sets of
draws would all be identical; the less information we have
about γ (due to larger elements in the variance matrix),
the more the draws will differ from each other. The spe-
cific pattern of variation summarizes all knowledge
about the parameters that we can obtain from the statis-
tical procedure. We still need to translate γ into substan-
tively interesting quantities, but now that we have sum-
marized all knowledge about γ we are well positioned to
make the translation. In the next three subsections, we
describe algorithms for converting the simulated param-
eters into predicted values, expected values, and first
differences.

Predicted Values

Our task is to draw one value of Y conditional on one
chosen value of each explanatory variable, which we
represent with the vector Xc. Denote the simulated θ as

    θ̃c  and the corresponding Y as     Ỹc , a simulated predicted
value. Predicted values come in many varieties, depend-
ing on the kind of X-values used. For instance, Xc may
correspond to the future (in which case     Ỹc  is a simulated
forecast), a real situation described by observed data
(such that     Ỹc  is a simulated predicted value), or a hypo-
thetical situation not necessarily in the future (making

    Ỹc  a simulated counterfactual predicted value). None of

these is equivalent to the expected value (    ̂Y ) in a linear
regression, which we discuss in the following subsection.

To simulate one predicted value, follow these steps:

1. Using the algorithm in the previous subsection, draw
one value of the vector   ̃ (˜, ˜ ).γ β α= vec

2. Decide which kind of predicted value you wish to
compute, and on that basis choose one value for each
explanatory variable. Denote the vector of such val-
ues Xc .

3. Taking the simulated effect coefficients from the top
portion of   ̃γ, compute     

˜ ( , ˜)θ βc cg X= , where g(⋅,⋅) is
the systematic component of the statistical model.

4. Simulate the outcome variable     Ỹc  by taking a random
draw from     f c(˜ , ˜)θ α , the stochastic component of the
statistical model.

Repeat this algorithm, say, M = 1000 times, to produce
1000 predicted values, thereby approximating the entire
probability distribution of Yc . From these simulations
the researcher can compute not only the average pre-
dicted value but also measures of uncertainty around the
average. The predicted value will be expressed in the
same metric as the dependent variable, so it should re-
quire little specialized knowledge to understand.

Expected Values

Depending on the issue being studied, the expected or
mean value of the dependent variable may be more inter-
esting than a predicted value. The difference is subtle but
important. A predicted value contains both fundamental
and estimation uncertainty, whereas an expected value
averages over the fundamental variability arising from
sheer randomness in the world, leaving only the estima-
tion uncertainty caused by not having an infinite num-
ber of observations. Thus, predicted values have a larger
variance than expected values, even though the average
should be nearly the same in both cases.2

When choosing between these two quantities of in-
terest, researchers should reflect on the importance of
fundamental uncertainty for the conclusions they are
drawing. In certain applications, such as forecasting the
actual result of an election or predicting next month’s
foreign exchange rate, scholars and politicians—as well
as investors—want to know not only the expected out-
come, but also how far the outcome could deviate from
expectation due to unmodeled random factors. Here, a1This distributional statement is a shorthand summary of the

Bayesian, likelihood, and Neyman-Pearson theories of statistical
inference. The interpretive differences among these theories (such
as whether θ or   ̂θ  is the random variable) are important but need
not concern us here, as our approach can usually be employed
with any of these and most other theories of inference (see Barnett
1982).

2In linear models, the average predicted value is identical to the ex-
pected value. For nonlinear cases, the two can differ but are often
close if the nonlinearity is not severe.

Repeat this M = 1000 times to approximate the entire probability
distribution of Yc . Using this estimated distribution we can
compute mean and SDs which will approximate the predicted
values and their error.



Simulating expected values

     

predicted value seems most appropriate. For other appli-
cations, the researcher may want to highlight the average
effect of a particular explanatory variable, so an expected
value would be the best choice.

We now offer an algorithm for creating one simula-
tion of an expected value:

1. Following the procedure for simulating the param-
eters, draw one value of the vector   ̃ (˜ , ˜).γ β α= vec

2. Choose one value for each explanatory variable and
denote the vector of values as Xc .

3. Taking the simulated effect coefficients from the top
portion of   ̃γ , compute     

˜ ( , ˜)θ βc cg X= , where g(⋅,⋅) is
the systematic component of the statistical model.

4. Draw m values of the outcome variable     
˜( )Yc

k  (k =
1, . . . , m) from the stochastic component     f c(˜ , ˜)θ α .
This step simulates fundamental uncertainty.

5. Average over the fundamental uncertainty by calcu-
lating the the mean of the m simulations to yield one

simulated expected value 
    
˜( ) ˜( )E Y Y mc c

k
k

m= =∑ 1
.

When m = 1, this algorithm reduces to the one for pre-
dicted values. If m is a larger number, Step 4 accurately
portrays the fundamental variability, which Step 5 aver-
ages away to produce an expected value. The larger the
value of m, the more successful the algorithm will be in
purging ˜ )E Yc(  of any fundamental uncertainty.

To generate 1000 simulations of the expected value,
repeat the entire algorithm M = 1000 times for some
fixed value of m. The resulting expected values will differ
from each other due to estimation uncertainty, since each
expected value will correspond to a different   ̃γ . These M
simulations will approximate the full probability distri-
bution of E(Yc), enabling the researcher to compute aver-
ages, standard errors, confidence intervals, and almost
anything else desired.

The algorithm works in all cases but involves some
approximation error, which we can reduce by setting
both m and M sufficiently high. For some statistical
models, there is a shortcut that curtails both computa-
tion time and approximation error. Whenever E(Yc) = θc ,
the researcher can skip steps 4–5 of the expected value al-
gorithm, since steps 1–3 suffice to simulate one expected
value. This shortcut is appropriate for the linear-normal
and logit models in Equations 2 and 3.

First Differences

A first difference is the difference between two expected,
rather than predicted, values. To simulate a first differ-
ence, researchers need only run steps 2–5 of the expected
value algorithm twice, using different settings for the ex-
planatory variables.

For instance, to simulate a first difference for the first
explanatory variable, set the values for all explanatory
variables except the first at their means and fix the first
one at its starting point. Denote this vector of starting
values for the explanatory variables as Xs and run the ex-
pected value algorithm once to generate     

˜( )E Ys , the aver-
age value of Y conditional on Xs. Next change the value of
the first explanatory variable to its ending point, leaving
the others at their means as before. Denote the new vec-
tor as Xe and rerun the algorithm to get     

˜( )E Ye , the mean
of Y conditional on Xe. The first difference is simply

    
˜( ) ˜( )E Y E Ye s− . Repeat the first difference algorithm, say,

M = 1000 times to approximate the distribution of first
differences. Average the simulated values to obtain a
point estimate, compute the standard deviation to obtain
a standard error, or sort the values to approximate a con-
fidence interval.

We previously discussed expected values of Y, and
until now this section has considered first differences
based on only this type of expected value. Different ex-
pectations, such as Pr(Y = 3) in an ordered-probit model,
may also be of interest. For these cases, the expected
value algorithm would need to be modified slightly. We
have made the necessary modifications in CLARIFY, the
software package described in the appendix, which al-
lows researchers to calculate a wide variety of expected
values and first differences, as well as predicted values
and other quantities of interest.

The algorithms in this article do not require new as-
sumptions; rather, they rest on foundations that have be-
come standard in the social sciences. In particular, we as-
sume that the statistical model is identified and correctly
specified (with the appropriate explanatory variables and
functional form), which allows us to focus on interpret-
ing and presenting the final results. We also assume that
the central limit theorem holds sufficiently for the avail-
able sample size, such that the sampling distribution of
parameters (not the stochastic component) can be de-
scribed by a normal distribution.3 Although we focus on
asymptotic results, as do the vast majority of the applied
researchers using nonlinear models, simulation works
with finite sample distributions, which are preferable
when feasible. In short, our algorithms work whenever
the usual assumptions work.

Alternative Approaches

In this section, we discuss several other techniques for
generating quantities of interest and measuring the un-
certainty around them. These approaches can be valuable

3From a Bayesian perspective, we exclude unusual cases where a
flat prior generates an improper posterior.

Note: It is m that approximates the fundamental variability but Step 5
averages it away. A large enough m will purge the simulated result of any
fundamental uncertainty.

Repeat the entire process M = 1000 times to estimate the full probability
distribution of E (Yc).



Calculating standard errors in Zelig

## Examples from titanic data

titanic <- read.dta("titanic.dta")

levels(titanic$class) <- c("first","second","third","crew")

z.out <- zelig(survived ~ age+sex+class, model="logit", data=titanic)

summary(z.out)

x.kate <- setx(z.out, ageadults=1, sexman=1,

classsecond=0, classthird=0, classcrew=0)

x.kate[1,] <- c(1,1,0,0,0,0)

x.leo <- setx(z.out, ageadults=1, sexman=1,

classsecond=0, classthird=1, classcrew=0)

x.leo[1,] <- c(1,1,1,0,1,0)

summary(s.out <- sim(z.out, x=x.leo, x1=x.kate))



Calculating standard errors in Zelig
> summary(s.out <- sim(z.out, x=x.leo, x1=x.kate))

Values of X

(Intercept) ageadults sexman classsecond classthird classcrew

1 1 1 1 0 1 0

Values of X1

(Intercept) ageadults sexman classsecond classthird classcrew

1 1 1 0 0 0 0

Expected Values: E(Y|X)

mean sd 2.5% 97.5%

1 0.105 0.01205 0.08251 0.1290

Predicted Values: Y|X

0 1

1 0.888 0.112

First Differences in Expected Values: E(Y|X1)-E(Y|X)

mean sd 2.5% 97.5%

1 0.7791 0.02423 0.7291 0.8227

Risk Ratios: P(Y=1|X1)/P(Y=1|X)

mean sd 2.5% 97.5%

1 8.538 1.062 6.723 10.89



More standard errors in Zelig
## economic_bills data

ecbills <- read.dta("economic_bills.dta")

z.out <- zelig(status ~ cabinet + vpdi_LH92economic + xland,

model="logit", data=ecbills)

x.out <- setx(z.out)

x.out[1,] <- c(1,0,0,0,0,1)

summary(sim(z.out, x.out))

# for comparison:

predict(log2,new=data.frame(cabinet=0,vpdi_LH92economic=0,xland="UK"),

type="response", se=T)

## economic_bills data qn4c

x.out[1,] <- c(1,1,5,1,0,0)

summary(sim(z.out, x.out))

# for comparison:

predict(log2,new=data.frame(cabinet=1,vpdi_LH92economic=5,xland="FRA"),

type="response",se=T)

## economic_bills data qn4d

(x.out <- setx(z.out, vpdi_LH92economic=seq(0,10.4,.1)))

x.out[,2] <- 0

x.out[,5] <- 1

s.out <- sim(z.out, x.out)

plot.ci(s.out)

lines(seq(0,10.4,.1), apply(s.out$qi$ev,2,mean))



Plot from Economic bills data
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Replicate Benoit and Marsh (PRQ, 2009) Figure 2
## replicate Figure 2 Benoit and Marsh (2009) PRQ

require(foreign)

## Loading required package: foreign

suppressPackageStartupMessages(require(Zelig))

dail <- read.dta("http://www.kenbenoit.net/files/dailprobit.dta", convert.factors=F)

z.out <- zelig(wonseat ~ pspend_total*incumb+m, model="probit", data=dail, cite=FALSE)

x.incumb <- setx(z.out, pspend_total=seq(0,30,.5), incumb=1, m=4)

x.chall <- setx(z.out, pspend_total=seq(0,30,.5), incumb=0, m=4)

# x.chall[1,5] <- .0001

s.out <- sim(z.out, x=x.incumb, x1=x.chall)

plot.ci(s.out, xlab="% Candidate Spending in Constituency",

ylab="Probability of Winning a Seat")

text(5,.7,"Incumbents", col="red")

text(17,.4,"Challengers", col="blue")

abline(h=.5, lty="dashed", col="grey60")
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Replicate Benoit and Marsh (PRQ, 2009) Figure 2



Compare models fits using a Receiver Operating
Characteristic (ROC) plot

dail.incumb <- subset(dail, incumb==1, select=c(wonseat,pspend_total,incumb,m))

dail.chall <- subset(dail, incumb==0, select=c(wonseat,pspend_total,incumb,m))

z.out.i <- zelig(wonseat ~ pspend_total+m, model="probit", data=dail.incumb, cite=FALSE)

z.out.c <- zelig(wonseat ~ pspend_total+m, model="probit", data=dail.chall, cite=FALSE)

rocplot(z.out.i$y, z.out.c$y, fitted(z.out.i), fitted(z.out.c),

lty1="solid", lty2="solid", col2="blue", col1="red")

text(.6,.55,"Incumbents",col="red")

text(.8,.85,"Challengers",col="blue")
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Replicate Benoit and Marsh (PRQ, 2009) Figure 2
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Figure 2. Effect of spending on probability of winning a seat, comparing Challengers 

and Incumbents. Dashed lines indicates two standard errors. Predicted probabilities and 

standard errors estimated using CLARIFY, based on probit regression in Table 4. 

 

 


