Day 2: Rethinking regression as a predictive tool

Kenneth Benoit

Data Mining and Statistical Learning

February 25, 2015

Classification and prediction as goals

- Machine learning focuses on identifying classes (classification), while social science is typically interested"
- estimating marginal effects
- measuring things (latent trait scaling)
- Regression analysis is the workhorse of social science statistical analysis, but can also be used to predict out of sample
- "Statistical learning" view is that regression is a "supervised" machine learning method for continuously-valued outcomes

Supervised v. unsupervised methods compared

- Two different approaches:
- Supervised methods require a training set that exmplify constrasting classes, identified by the researcher
- Unsupervised methods scale differences and identify patterns, without requiring a training step
- Relative advantage of supervised methods: You set the input dimensions
- Relative disadvantage of supervised methods:

You need to "know" in advance the dimensions being scaled, in order to train or fit the model

Supervised v. unsupervised methods: Examples

- General examples:
- Supervised: Regression, logistic regression, Naive Bayes, k-Nearest Neighbor, Support Vector Machines (SVM)
- Unsupervised: correspondence analysis, IRT models, factor analytic approaches
- Lots of applications in text analysis
- Supervised: Wordscores (LBG 2003); SVMs (Yu, Kaufman and Diermeier 2008); Naive Bayes (Evans et al 2007)
- Unsupervised "Wordfish" (Slapin and Proksch 2008); Correspondence analysis (Schonhardt-Bailey 2008); two-dimensional IRT (Monroe and Maeda 2004)

How do we get "true" condition?

- For regression examples: We have a sample with a continuously-valued dependent variable
- In some domains: through more expensive or extensive tests
- May also be through expert annotation or coding
- A scheme should be tested and reported for its reliability

Generalization and overfitting

- Generalization: A classifier or a regression algorithm learns to correctly predict output from given inputs not only in previously seen samples but also in previously unseen samples
- Overfitting: A classifier or a regression algorithm learns to correctly predict output from given inputs in previously seen samples but fails to do so in previously unseen samples. This causes poor prediction/generalization

How model fit is evaluated

- For discretely-valued outcomes (class prediction): Goal is to maximize the frontier of precise identification of true condition with accurate recall, defined in terms of false positives and false negatives
- will define formally later
- For continuously-valued outcomes: minimize Root Mean Squared Error (RMSE)

Regression as a prediction method

- Training step: fitting a model to data for which the outcome variable Y_{i} is known
- Test step: predicting out of sample Y_{i} for a new configuration of data input values \mathbf{X}_{i}
- Evaluation: based on RMSE, or average

$$
\sqrt{\sum\left(Y_{i}-\hat{Y}_{i}\right)}
$$

Example

$\operatorname{par}(\operatorname{mar}=\mathrm{c}(4,4,1,1))$
$\mathrm{x}<-\mathrm{c}(0,3,1,0,6,5,3,4,10,8)$
$y<-c(12,13,15,19,26,27,29,31,40,48)$
plot(x, y, xlab="Number of prior convictions (X)", ylab="Sentence length (Y)", pch=19) abline(h=c (10, 20, 30,40), col="grey70")

Least squares formulas

For the three parameters (simple regression):

- the regression coefficient:

$$
\hat{\beta}_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}
$$

- the intercept:

$$
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
$$

- and the residual variance σ^{2} :

$$
\hat{\sigma}^{2}=\frac{1}{n-2} \sum\left[y_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}\right)\right]^{2}
$$

Least squares formulas continued

Things to note:

- the prediction line is $\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x$
- the value $\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}$ is the predicted value for x_{i}
- the residual is $e_{i}=y_{i}-\hat{y}_{i}$
- The residual sum of squares $(\mathrm{RSS})=\sum_{i} e_{i}^{2}$
- The estimate for σ^{2} is the same as

$$
\hat{\sigma}^{2}=\operatorname{RSS} /(n-2)
$$

Example to show fomulas in R

```
> x <- c(0,3,1,0,6,5,3,4,10,8)
> y <- c(12,13,15,19,26,27,29,31,40,48)
> (data <- data.frame(x, y, xdev=(x-mean(x)), ydev=(y-mean(y)),
+ xdevydev=((x-mean (x))*(y-mean (y))),
+ xdev2=(x-mean(x))^2,
+ ydev2=(y-mean(y))^2))
\begin{tabular}{lrrrrrrr} 
& x & y & xdev & ydev & xdevydev & xdev2 & ydev2 \\
1 & 0 & 12 & -4 & -14 & 56 & 16 & 196 \\
2 & 3 & 13 & -1 & -13 & 13 & 1 & 169 \\
3 & 1 & 15 & -3 & -11 & 33 & 9 & 121 \\
4 & 0 & 19 & -4 & -7 & 28 & 16 & 49 \\
5 & 6 & 26 & 2 & 0 & 0 & 4 & 0 \\
6 & 5 & 27 & 1 & 1 & 1 & 1 & 1 \\
7 & 3 & 29 & -1 & 3 & -3 & 1 & 9 \\
8 & 4 & 31 & 0 & 5 & 0 & 0 & 25 \\
9 & 10 & 40 & 6 & 14 & 84 & 36 & 196 \\
10 & 8 & 48 & 4 & 22 & 88 & 16 & 484
\end{tabular}
> (SP <- sum(data$xdevydev))
[1] 300
> (SSx <- sum(data$xdev2))
[1] 100
> (SSy <- sum(data$ydev2))
[1] 1250
> (b1 <- SP / SSx)
[1] 3
```


From observed to "predicted" relationship

- In the above example, $\hat{\beta}_{0}=14, \hat{\beta}_{1}=3$
- This linear equation forms the regression line
- The regression line always passes through two points:
- the point $\left(x=0, y=\hat{\beta}_{0}\right)$
- the point (\bar{x}, \bar{y}) (the average X predicts the average Y)
- The residual sum of squares $(\mathrm{RSS})=\sum_{i} e_{i}^{2}$
- The regression line is that which minimizes the RSS

Ordinary Least Squares (OLS)

- Objective: minimize $\sum e_{i}^{2}=\sum\left(Y_{i}-\hat{Y}_{i}\right)^{2}$, where
- $\hat{Y}_{i}=b_{0}+b_{1} X_{i}$
- $\operatorname{error} e_{i}=\left(Y_{i}-\hat{Y}_{i}\right)$

$$
\begin{aligned}
b & =\frac{\sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum\left(X_{i}-\bar{X}\right)} \\
& =\frac{\sum X_{i} Y_{i}}{\sum X_{i}^{2}}
\end{aligned}
$$

- The intercept is: $b_{0}=\bar{Y}-b_{1} \bar{X}$

OLS rationale

- Formulas are very simple
- Closely related to ANOVA (sums of squares decomposition)
- Predicted Y is sample mean when $\operatorname{Pr}(Y \mid X)=\operatorname{Pr}(Y)$
- In the special case where Y has no relation to $X, b_{1}=0$, then OLS fit is simply $\hat{Y}=b_{0}$
- Why? Because $b_{0}=\bar{Y}-b_{1} \bar{X}$, so $\hat{Y}=\bar{Y}$
- Prediction is then sample mean when X is unrelated to Y
- Since OLS is then an extension of the sample mean, it has the same attractice properties (efficiency and lack of bias)
- Alternatives exist but OLS has generally the best properties when assumptions are met

OLS in matrix notation

- Formula for coefficient β :

$$
\begin{aligned}
Y & =X \beta+\epsilon \\
X^{\prime} Y & =X^{\prime} X \beta+X^{\prime} \epsilon \\
X^{\prime} Y & =X^{\prime} X \beta+0 \\
\left(X^{\prime} X\right)^{-1} X^{\prime} Y & =\beta+0 \\
\beta & =\left(X^{\prime} X\right)^{-1} X^{\prime} Y
\end{aligned}
$$

- Formula for variance-covariance matrix: $\sigma^{2}\left(X^{\prime} X\right)^{-1}$
- In simple case where $y=\beta_{0}+\beta_{1} * x$, this gives $\sigma^{2} / \sum\left(x_{i}-\bar{x}\right)^{2}$ for the variance of β_{1}
- Note how increasing the variation in X will reduce the variance of β_{1}

The "hat" matrix

- The hat matrix H is defined as:

$$
\begin{aligned}
\hat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y \\
X \hat{\beta} & =X\left(X^{\prime} X\right)^{-1} X^{\prime} y \\
\hat{y} & =H y
\end{aligned}
$$

- $H=X\left(X^{\prime} X\right)^{-1} X^{\prime}$ is called the hat-matrix
- Other important quantities, such as $\hat{y}, \sum e_{i}^{2}$ (RSS) can be expressed as functions of H
- Corrections for heteroskedastic errors ("robust" standard errors) involve manipulating H

Some important OLS properties to understand

Applies to $y=\alpha+\beta x+\epsilon$

- If $\beta=0$ and the only regressor is the intercept, then this is the same as regressing y on a column of ones, and hence $\alpha=\bar{y}$ - the mean of the observations
- If $\alpha=0$ so that there is no intercept and one explanatory variable x, then $\beta=\frac{\sum x y}{\sum x^{2}}$
- If there is an intercept and one explanatory variable, then

$$
\begin{aligned}
\beta & =\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}} \\
& =\frac{\sum_{i}\left(x_{i}-\bar{x}\right) y_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}}
\end{aligned}
$$

Some important OLS properties (cont.)

- If the observations are expressed as deviations from their means, $y *=y-\bar{y}$ and $x^{*}=x-\bar{x}$, then $\beta=\sum x^{*} y^{*} / \sum x^{* 2}$
- The intercept can be estimated as $\bar{y}-\beta \bar{x}$. This implies that the intercept is estimated by the value that causes the sum of the OLS residuals to equal zero.
- The mean of the \hat{y} values equals the mean y values - together with previous properties, implies that the OLS regression line passes through the overall mean of the data points

Normally distributed errors

FIGURE 2.2. The Classical Regression Model.

OLS in R

```
> dail <- read.dta("dail2002.dta")
> mdl <- lm(votes1st ~ spend_total*incumb + minister, data=dail)
> summary(mdl)
Call:
lm(formula = votes1st ~ spend_total * incumb + minister, data = dail)
Residuals:
    Min 1Q Median 3Q Max
-5555.8 -979.2 -262.4 877.2 6816.5
```

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	469.37438	161.54635	2.906	0.00384	**
spend_total	0.20336	0.01148	17.713	< 2e-16	***
incumb	5150.75818	536.36856	9.603	< 2e-16	***
minister	1260.00137	474.96610	2.653	0.00826	**
spend_total:incumb	-0.14904	0.02746	-5.428	$9.28 \mathrm{e}-08$	***
Signif. codes: 0	**' 0.001	**' 0.01	' 0.05	. 0.1	

Residual standard error: 1796 on 457 degrees of freedom
(2 observations deleted due to missingness)
Multiple R-squared: 0.6672, Adjusted R-squared: 0.6643
F-statistic: 229 on 4 and 457 DF, p-value: < $2.2 \mathrm{e}-16$

OLS in Stata

```(Ireland 2002 Dail Election - Candidate . gen spendXinc = spend_total * incumb (2 missing values generated)```						
. reg votes1st spend_total incumb minister spendXinc						
Source	SS	df MS			Number of obs $=462$	
					F ( 4, 457)	$=229.05$
Model \|	$2.9549 \mathrm{e}+09$	473	28297		Prob > F	$=0.0000$
Residual \|	$1.4739 \mathrm{e}+09$	457322	201.58		R -squared	$=0.6672$
					Adj R-squared	$=0.6643$
Total \|	$4.4288 \mathrm{e}+09$	461960	007.17		Root MSE	$=1795.9$
votes1st	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
spend_total \|	. 2033637	. 0114807	17.71	0.000	. 1808021	. 2259252
incumb \|	5150.758	536.3686	9.60	0.000	4096.704	6204.813
minister	1260.001	474.9661	2.65	0.008	326.613	2193.39
spendXinc \|	-. 1490399	. 0274584	-5.43	0.000	-. 2030003	-. 0950794
_cons \|	469.3744	161.5464	2.91	0.004	151.9086	786.8402

## Sums of squares (ANOVA)

TSS Total sum of squares $\sum\left(y_{i}-\bar{y}\right)^{2}$
ESS Estimation or Regression sum of squares $\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}$
RSS Residual sum of squares $\sum e_{i}^{2}=\sum\left(\hat{y}_{i}-y_{i}\right)^{2}$
The key to remember is that TSS $=\mathrm{ESS}+\mathrm{RSS}$

## Examining the sums of squares

```
> yhat <- mdl$fitted.values # uses the lm object mdl from previous
> ybar <- mean(mdl$model[,1])
> y <- mdl$model[,1] # can't use dail$votes1st since diff N
> TSS <- sum((y-ybar) ^2)
> ESS <- sum((yhat-ybar)^2)
> RSS <- sum((yhat-y)^2)
> RSS
[1] 1473917120
> sum(mdl$residuals^2)
[1] 1473917120
> (r2 <- ESS/TSS)
[1] 0.6671995
> (adjr2 <- (1 - (1-r2)*(462-1)/(462-4-1)))
[1] 0.6642865
> summary(mdl)$r.squared # note the call to summary()
[1] 0.6671995
> RSS/457
[1] 3225202
> sqrt(RSS/457)
[1] 1795.885
> summary(mdl)$sigma
[1] 1795.885
```


## Regression model return values

Here we will talk about the quantities returned with the $\operatorname{lm}()$ command and lm class objects.

Table 10.1 Extractor functions for the result of $\operatorname{lm}()$

summary ()	returns summary information about the regression
plot()	makes diagnostic plots
coef()	returns the coefficients
residuals()	returns the residuals (can be abbreviated resid())
fitted()	returns fitted values, $\widehat{y}_{i}$
deviance()	returns RSS
predict()	performs predictions
anova()	finds various sums of squares
AIC()	is used for model selection

## Uncertainty in regression models: the linear case revisited

- Suppose we regress $y$ on $X$ to produce $b=\left(X^{\prime} X\right)^{-1} X^{\prime} y$
- Then we set explanatory variables to new values $X^{p}$ to predict $Y^{p}$
- The prediction $Y^{p}$ will have two forms of uncertainty:

1. estimation uncertainty that can be reduced by increasing the sample size. Estimated a $\hat{y}^{p}=X^{p} b$ and depends on sample size through $b$
2. fundamental variability comes from variability in the dependent variable around the expected value $\mathrm{E}\left(Y^{P}\right)=\mu=X^{P} \beta$ - even if we knew the true $\beta$

## Estimation uncertainty and fundamental variability

- We can decompose this as follows:

$$
\begin{aligned}
Y^{p} & =X^{p} b+\epsilon^{p} \\
\operatorname{Var}\left(Y^{p}\right) & =\operatorname{Var}\left(X^{p} b\right)+\operatorname{Var}\left(\epsilon^{p}\right) \\
& =X^{p} \operatorname{Var}(b)\left(X^{p}\right)^{\prime}+\sigma^{2} I \\
& =\sigma^{2} X^{p}\left(\left(X^{p}\right)^{\prime} X^{p}\right)^{-1}+\sigma^{2} I \\
& =\text { estimation uncertainty }+ \text { fundamental variability }
\end{aligned}
$$

- It can be shown that the distribution of $\hat{Y}^{p}$ is:

$$
\hat{Y}^{p} \sim N\left(X^{p} \beta, X^{p} \operatorname{Var}(b)\left(X^{p}\right)^{\prime}\right)
$$

- and that the unconditional distribution of $Y^{p}$ is:

$$
Y^{p} \sim N\left(X^{p} \beta, X^{p} \operatorname{Var}(b)\left(X^{p}\right)^{\prime}+\sigma^{2} I\right)
$$

## Confidence intervals for predictions

- For any set of explanatory variables $x_{0}$, the predicted response is $\hat{y_{0}}=x_{0}^{\prime} \hat{\beta}$
- But this prediction also comes with uncertainty, and by extension, with a confidence interval
- Two types:
- predictions of future observations: based on the prediction plus the variance of $\epsilon$ (Note: this is what we usually want)

$$
\hat{y_{0}} \pm t_{n-k-1}^{\alpha / 2} \hat{\sigma} \sqrt{1+x_{o}^{\prime}\left(X^{\prime} X\right)^{-1} x_{0}}
$$

- prediction of mean response: the average value of a $y_{0}$ with the characteristics $x_{0}$ - only takes into account the variance of $\hat{\beta}$

$$
\hat{y_{0}} \pm t_{n-k-1}^{\alpha / 2} \hat{\sigma} \sqrt{x_{0}^{\prime}\left(X^{\prime} X\right)^{-1} x_{0}}
$$

## Confidence intervals for predictions in R

```
> summary(m1)$coeff
Estimate Std. Error t value Pr(>|t|)
(Intercept) 464.5955332 162.59752848 2.857335 4.466694e-03
spend_total 0.2041449 0.01155236 17.671273 1.154515e-53
incumb 4493.3251289 478.80828470 9.384393 2.962201e-19
spend_total:incumb -0.1068943 0.02254283-4.741832 2.832798e-06
> fivenum(dail$spend_total) # what is typical spending profile
[1] 0.00 5927.32 14699.12 20812.66 51971.28
> x0 <- c(1, 75000, 1, 75000) # set some predictor values
> (y0 <- sum(x0*coef(m1))) # compute predicted response
[1] 12251.71
> fivenum(dail$votes1st) # how typical is this response?
[1] 19.0 1151.5 3732.0 6432.0 14742.0
> quantile(dail$votes1st, .99, na.rm=T) # versus 99th percentile
 99%
11138.44
> x0.df <- data.frame(incumb=1, spend_total=75000)
> predict(m1, x0.df)
 1
12251.71
> predict(m1, x0.df, interval="confidence")
 fit lwr upr
1 12251.71 10207.33 14296.09
> predict(m1, x0.df, interval="prediction")
 fit lwr upr
112251.71 8153.068 16350.36
```


## Fundamental and estimation variability for non-linear forms

- For well-known cases, we known both the expectation and the fundamental variability, e.g.
- Poisson $E(Y)=e^{X \beta}, \operatorname{Var}(Y)=\lambda$
- logistic $E(Y)=\frac{1}{1+e^{-X \beta}}, \operatorname{Var}(Y)=\pi(1-\pi)$
- Calculating the estimation variability is harder, but can be done using a linear approximation from the Taylor series. The Taylor series approximation of $\hat{y}^{p}=g(b)$ is:

$$
\hat{y}^{p}=g(b)=g(\beta)+g^{\prime}(\beta)(b-\beta)+\cdots
$$

where $g^{\prime}(\beta)$ is the first derivative of the functional form $g(\beta)$ with respect to $\beta$

- If we drop all but the first two terms, then

$$
\begin{aligned}
\operatorname{Var}\left(\hat{Y}^{p}\right) & \approx \operatorname{Var}[g(\beta)]+\operatorname{Var}\left[g^{\prime}(\beta)(b-\beta)\right] \\
& =g^{\prime}(\beta) \operatorname{Var}(b) g^{\prime}(\beta)^{\prime}
\end{aligned}
$$

- This is known as the Delta method for calculating standard errors of predictions


## Precision and recall

- Illustration framework



## Precision and recall and related statistics

- Precision: $\frac{\text { true positives }}{\text { true positives }+ \text { false positives }}$
- Recall: $\frac{\text { true positives }}{\text { true positives }+ \text { false negatives }}$
- Accuracy: $\frac{\text { Correctly classified }}{\text { Total number of cases }}$
- $F 1=2 \frac{\text { Precision } \times \text { Recall }}{\text { Precision }+ \text { Recall }}$ (the harmonic mean of precision and recall)


## Example: Computing precision/recall

Assume:

- We have a sample in which 80 outcomes are really positive (as opposed to negative, as in sentiment)
- Our method declares that 60 are positive
- Of the 60 declared positive, 45 are actually positive

Solution:

$$
\begin{aligned}
\text { Precision } & =(45 /(45+15))=45 / 60=0.75 \\
\text { Recall } & =(45 /(45+35))=45 / 80=0.56
\end{aligned}
$$

## Accuracy?



## add in the cells we can compute



## but need True Negatives and $N$ to compute accuracy



## assume 10 True Negatives:



Accuracy $=(45+10) / 105$
$=0.52$

$$
\mathrm{F} 1=2 *(0.75 * 0.56) /(0.75+0.56) \quad=0.64
$$

## now assume 100 True Negatives:



Accuracy $=(45+100) / 195$
$=0.74$

$$
\mathrm{F} 1=2 *(0.75 * 0.56) /(0.75+0.56) \quad=0.64
$$

## Receiver Operating Characteristic (ROC) plot



## Estimating uncertainty through simulation

- King, Timz, and Wittenberg (2000) propose using statistical simulation to estimate uncertainty
- Notation:
stochastic component $Y_{i} \sim f\left(\theta_{i}, \alpha\right)$
systmatic component $\theta_{i}=g\left(X_{i}, \beta\right)$
For example in a linear-normal model,

$$
Y_{i}=N\left(\mu_{i}, \sigma^{2}\right) \text { and } \mu_{i}=X_{i} \beta
$$

simulated parameter vector $\hat{\gamma}=\operatorname{vec}(\hat{\beta}, \hat{\alpha})$
The central limit theorem tells us we can simulate $\gamma$ as

$$
\tilde{\gamma} \sim \mathrm{N}(\hat{\gamma}, \hat{V}(\hat{\gamma}))
$$

## Simulating predicted values

1. Using the algorithm in the previous subsection, draw one value of the vector $\tilde{\gamma}=\operatorname{vec}(\tilde{\beta}, \tilde{\alpha})$.
2. Decide which kind of predicted value you wish to compute, and on that basis choose one value for each explanatory variable. Denote the vector of such values $X_{c}$.
3. Taking the simulated effect coefficients from the top portion of $\tilde{\gamma}$, compute $\tilde{\theta}_{c}=g\left(X_{c}, \tilde{\beta}\right)$, where $g(\cdot, \cdot)$ is the systematic component of the statistical model.
4. Simulate the outcome variable $\tilde{Y}_{c}$ by taking a random draw from $f\left(\tilde{\theta}_{c}, \tilde{\alpha}\right)$, the stochastic component of the statistical model.

Repeat this $M=1000$ times to approximate the entire probability distribution of $Y_{c}$. Using this estimated distribution we can compute mean and SDs which will approximate the predicted values and their error.

## Simulating expected values

1. Following the procedure for simulating the parameters, draw one value of the vector $\tilde{\gamma}=\operatorname{vec}(\tilde{\beta}, \tilde{\alpha})$.
2. Choose one value for each explanatory variable and denote the vector of values as $X_{c}$.
3. Taking the simulated effect coefficients from the top portion of $\tilde{\gamma}$, compute $\tilde{\theta}_{c}=g\left(X_{c}, \tilde{\beta}\right)$, where $g(\cdot, \cdot)$ is the systematic component of the statistical model.
4. Draw $m$ values of the outcome variable $\tilde{Y}_{c}^{(k)}(k=$ $1, \ldots, m)$ from the stochastic component $f\left(\tilde{\theta}_{c}, \tilde{\alpha}\right)$. This step simulates fundamental uncertainty.
5. Average over the fundamental uncertainty by calculating the the mean of the $m$ simulations to yield one simulated expected value $\tilde{E}\left(Y_{c}\right)=\sum_{k=1}^{m} \tilde{Y}_{c}^{(k)} / m$.

Note: It is $m$ that approximates the fundamental variability but Step 5 averages it away. A large enough $m$ will purge the simulated result of any fundamental uncertainty.
Repeat the entire process $M=1000$ times to estimate the full probability distribution of $E\left(Y_{c}\right)$.

## Calculating standard errors in Zelig

```
Examples from titanic data
titanic <- read.dta("titanic.dta")
levels(titanic$class) <- c("first","second","third","crew")
z.out <- zelig(survived ~ age+sex+class, model="logit", data=titanic)
summary(z.out)
x.kate <- setx(z.out, ageadults=1, sexman=1,
 classsecond=0, classthird=0, classcrew=0)
x.kate[1,] <- c(1,1,0,0,0,0)
x.leo <- setx(z.out, ageadults=1, sexman=1,
 classsecond=0, classthird=1, classcrew=0)
x.leo[1,] <- c(1,1,1,0,1,0)
summary(s.out <- sim(z.out, x=x.leo, x1=x.kate))
```


## Calculating standard errors in Zelig

```
> summary(s.out <- sim(z.out, \(x=x . l e o, x 1=x . k a t e))\)
Values of X
 (Intercept) ageadults sexman classsecond classthird classcrew
\(\begin{array}{lllllll}1 & 1 & 1 & 1 & 0 & 1 & 0\end{array}\)
Values of X1
 \(\begin{array}{rrrrrr}\text { (Intercept) } & \text { ageadults } & \text { sexman } & \text { classsecond } & \text { classthird } & \text { classcrew } \\ 1 & 1 & 0 & 0 & 0 & 0\end{array}\)
Expected Values: E(Y|X)
 mean sd \(2.5 \% \quad 97.5 \%\)
10.1050 .012050 .082510 .1290
Predicted Values: \(\mathrm{Y} \mid \mathrm{X}\)
 \(0 \quad 1\)
10.8880 .112
First Differences in Expected Values: E(Y|X1)-E(Y|X)
 mean sd \(2.5 \% \quad 97.5 \%\)
10.77910 .024230 .72910 .8227
Risk Ratios: \(\mathrm{P}(\mathrm{Y}=1 \mid \mathrm{X} 1) / \mathrm{P}(\mathrm{Y}=1 \mid \mathrm{X})\)
 mean sd 2.5\% 97.5\%
18.5381 .0626 .72310 .89
```


## More standard errors in Zelig

```
economic_bills data
ecbills <- read.dta("economic_bills.dta")
z.out <- zelig(status ~ cabinet + vpdi_LH92economic + xland,
 model="logit", data=ecbills)
x.out <- setx(z.out)
x.out[1,] <- c(1,0,0,0,0,1)
summary(sim(z.out, x.out))
for comparison:
predict(log2,new=data.frame(cabinet=0,vpdi_LH92economic=0,xland="UK"),
 type="response", se=T)
economic_bills data qn4c
x.out[1,] <- c(1,1,5,1,0,0)
summary(sim(z.out, x.out))
for comparison:
predict(log2,new=data.frame(cabinet=1,vpdi_LH92economic=5,xland="FRA"),
 type="response",se=T)
economic_bills data qn4d
(x.out <- setx(z.out, vpdi_LH92economic=seq(0,10.4,.1)))
x.out[,2] <- 0
x.out[,5] <- 1
s.out <- sim(z.out, x.out)
plot.ci(s.out)
lines(seq(0,10.4,.1), apply(s.outqiev,2,mean))
```


## Plot from Economic bills data



## Replicate Benoit and Marsh (PRQ, 2009) Figure 2

```
replicate Figure 2 Benoit and Marsh (2009) PRQ
require(foreign)
```

\#\# Loading required package: foreign

```
suppressPackageStartupMessages(require(Zelig))
dail <- read.dta("http://www.kenbenoit.net/files/dailprobit.dta", convert.facto
z.out <- zelig(wonseat ~ pspend_total*incumb+m, model="probit", data=dail, cite
x.incumb <- setx(z.out, pspend_total=seq(0,30,.5), incumb=1, m=4)
x.chall <- setx(z.out, pspend_total=seq(0,30,.5), incumb=0, m=4)
x.chall[1,5] <- .0001
s.out <- sim(z.out, x=x.incumb, x1=x.chall)
plot.ci(s.out, xlab="% Candidate Spending in Constituency",
 ylab="Probability of Winning a Seat")
text(5,.7,"Incumbents", col="red")
text(17,.4,"Challengers", col="blue")
abline(h=.5, lty="dashed", col="grey60")
```


## Replicate Benoit and Marsh (PRQ, 2009) Figure 2



## Compare models fits using a Receiver Operating Characteristic (ROC) plot

```
dail.incumb <- subset(dail, incumb==1, select=c(wonseat,pspend_total,incumb,m))
dail.chall <- subset(dail, incumb==0, select=c(wonseat,pspend_total,incumb,m))
z.out.i <- zelig(wonseat ~ pspend_total+m, model="probit", data=dail.incumb, ci
z.out.c <- zelig(wonseat ~ pspend_total+m, model="probit", data=dail.chall, cit
rocplot(z.out.i$y, z.out.c$y, fitted(z.out.i), fitted(z.out.c),
 lty1="solid", lty2="solid", col2="blue", col1="red")
text(.6,.55,"Incumbents",col="red")
text(.8,.85,"Challengers",col="blue")
```

ROC Curve


## Replicate Benoit and Marsh (PRQ, 2009) Figure 2




