Day 1: Working with Data

Kenneth Benoit

Data Mining and Statistical Learning

February 9, 2015

Why focus on data types and structures?

» "data” mining and "data” science imply that we know how to
work with data

» data structures are not neutral - they shape how we record,
see, and have the ability to analyze information

» much of the actual work in data mining and data analysis is
done at the data "mungeing” stage

Basic (atomic) data types in R

numeric 8-byte numeric representations
integer non-floating point numbers
character text
logical TRUE or FALSE

Recursive types also exist, such as lists and vectors; there are also
special classifications for NA

Basic data types in R: integer

x <- 10
typeof (x)

[1] "double"
is.integer (x)
[1] FALSE

x <- 7L # force integer type
typeof (x)

[1] "integer"
object.size(x)
48 bytes
as.integer(3.14)

[1] 3

Basic data types in R: character

typeof ("test string")
[1] "character"

object.size("a")

96 bytes

s <= "" # Unicode

cat(s)

#it

as.character("3.14") # coerce numerics to character

[1] "3.14"

Basic data types in R: numeric

x <- 10.5 # assign a numeric value

b d # print the value of

[1] 10.5

typeof (x) # print the class name of z

[1] "double"
object.size(x) # show storage size in bytes

48 bytes

is.*() and as.*()

is.numeric(x) # is the object of numeric type?
[1] TRUE

is.numeric(7.1)

[1] TRUE

is.numeric("7.1")

[1] FALSE

is.numeric(as.numeric("7.1"))

[1] TRUE

Basic data types in R: logical

A logical value is “TRUE' or ‘FALSE’, often created via comparison
between variables.

1 <2

[1] TRUE

w = 6, 2, &)

y <- c(4, 3, 2)

X >y

[1] FALSE FALSE TRUE

typeof (x > y)

[1] "logical"

Difference between ‘mode’ and ‘class’

» 'atomic’ modes are numeric, complex, character and logical

> recursive objects have modes such as 'list’ or 'function’ or a
few others

> an object has one and only one mode

» 'class’ is a property assigned to an object that determines how
generic functions operate with it - not a mutually exclusive
classification

> an object has no specific class assigned to it, such as a simple
numeric vector, it's class is usually the same as its mode, by
convention

» an object’'s mode can be changed through coercion, without
necessarily changing the class

Numerical precision issues

» floating point numbers are approximations of numbers

> precision: anything more than 16 base-10 digits must be
approximated

» fractions: approximated if not

> anything over stated precision is truncated: 3.57e21 4+ 1 =
3.57e21
1 -4/5 - 1/5
[1] -5.551115e-17

Machine limits

.Machine$integer.max
[1] 2147483647
.Machine[c("double.xmin", "double.xmax", "double.digits")]

$double.xmin

[1] 2.225074e-308
##

$double.xmax

[1] 1.797693e+308
##

$double.digits

[1] 53

Alternatives (Stata)

» single and double precision:
http://blog.stata.com/2012/04/02/
the-penultimate-guide-to-precision/

> R has only double precision

http://blog.stata.com/2012/04/02/the-penultimate-guide-to-precision/
http://blog.stata.com/2012/04/02/the-penultimate-guide-to-precision/

Common input formats

> csv
> Excel
» "fixed formats”

» relational databases

v

key-value pair schemes (JSON)

Special issue: text encoding

» a “character set” is a list of character with associated
numerical representations

» ASCII: the original character set, uses just 7 bits (27) — see
http://ergoemacs.org/emacs/unicode_basics.html

» ASCII was later extended, e.g. 1SO-8859
http://www.ic.unicamp.br/~stolfi/EXPORT/www/
IS0-8859-1-Encoding.html, using 8 bits (28)

> but this became a jungle, with no standards:
http://en.wikipedia.org/wiki/Character_encoding

http://ergoemacs.org/emacs/unicode_basics.html
http://www.ic.unicamp.br/~stolfi/EXPORT/www/ISO-8859-1-Encoding.html
http://www.ic.unicamp.br/~stolfi/EXPORT/www/ISO-8859-1-Encoding.html
http://en.wikipedia.org/wiki/Character_encoding

Solution: Unicode

v

Unicode was developed to provide a unique number (a "code
point”) to every known character — even some that are

"unknown”

problem: there are more far code points than fit into 8-bit
encodings. Hence there are multiple ways to encode the
Unicode code points

variable-byte encodings use multiple bytes as needed.
Advantage is efficiency, since most ASCII and simple extended
character sets can use just one byte, and these were set in the
Unicode standard to their ASCII and 1SO-8859 equivalents
two most common are UTF-8 and UTF-16, using 8 and 16
bits respectively

Warnings with text encodings

> Input texts can be very different

» Many text production software (e.g. MS Office-based
products) still tend to use proprietary formats, such as
Windows-1252

» Windows tends to use UTF-16, while Mac and other
Unix-based platforms use UTF-8

> Your eyes can be deceiving: a client may display gibberish but
the encoding might still be as intended

» No easy method of detecting encodings (except in HTML
meta-data)

What is a “Dataset”

» A dataset is a “rectangular” formatted table of data in which
all the values of the same variable must be in a single column

» Many of the datasets we use have been artificially reshaped in
order to fulfill this criterion of rectangularity

Revisting basic data concepts

» The difference between tables and datasets
» This is a (partial) dataset:

district incumbf wonseatf
1 Carlow Kilkenny Challenger Lost
2 Carlow Kilkenny Challenger Lost
5 Carlow Kilkenny Incumbent Won
100 Donegal South West Challenger Lost
459 Wicklow Incumbent Won
464 Wicklow Challenger Lost

» This is a table
Lost Won

Challenger 266 60
Incumbent 32 106

» The key with a dataset is that all the values of the same
variable must be in a single column

Example: Comparative Manifesto Project dataset

Note: Available from https://manifestoproject.wzb.eu/
load in a subset of the Manifesto Project dataset, with counts

load(url("http://kenbenoit.net/files/cmpdata.Rdata"))
View(cmpdata)

This is “wide” format

https://manifestoproject.wzb.eu/

Long v. wide formats

» reshape
» the “old” R way to do this, using ‘base::reshape()’
» problem: confusing and difficult to use

> reshape2

» from Hadley Wickham's reshape2 package
» data is first ‘melt'ed into long format
» then ‘cast’ into desired format

Example: wide to long using reshape?2

require(reshape?2)

Loading required package: reshape2

this will select only the "per" wariables for measurement
cmpdatalong <- melt(cmpdata,

id.vars = c("countryname", "party", "date"),
measure.vars = names(cmpdata) [21:76],
variable.name = "category",

value.name = "catcount")

why do this?
cmpdataLlong$category <- as.character(cmpdatalong$category)
View(cmpdataLong)

Example: wide to long using reshape?2

require(reshape2)
now we can get summary statistics across countries, e.g. for ecomomic
with(subset (cmpdatalong, grepl(" per7", category)), table(countryname, category

category

countryname per701 per702 per703 per704 per705 per706
Austria 34 34 34 34 34 34
Belgium 63 63 63 63 63 63
Cyprus 10 10 10 10 10 10
Denmark 60 60 60 60 60 60
Finland 47 47 47 47 47 47
France 23 23 23 23 23 23
Germany 30 30 30 30 30 30
Great Britain 20 20 20 20 20 20
Greece 17 17 17 17 17 17
Iceland 31 31 31 31 31 31
Ireland 31 31 31 31 31 31
Israel 32 32 32 32 32 32
Italy 41 41 41 41 41 41
Luxembourg 21 21 21 21 21 21
Malta 4 4 4 4 4 4
Netherlands 48 48 48 48 48 48
Norway 28 28 28 28 28 28
Portugal 38 38 38 38 38 38

Spain 57 57 57 57 57 57

A better way

require(dplyr)

Loading required package: dplyr

##

Attaching package: ‘’dplyr’

##

The following object is masked from ’package:stats’:
##

filter

##

The following objects are masked from ’package:base’:
##

intersect, setdiff, setequal, union

cmpdatalong2 <- melt(select(cmpdata, countryname, party, date, per101:per706),

id.vars = c("countryname", "party", "date"),

NOT NEEDED measure.vars = names(cmpdata) [21:76],
variable.name = "category",

value.name = "catcount")

cmpdatalong2$category <- as.character(cmpdatalong2$category)
identical (cmpdatalong, cmpdatalLong2)

[1] TRUE

withl(fil+arlemndatral ane? oranl ("“nar7" ecatacarv)) +ahlalecalintrvname catacar

Grouping operations: number of parties per election

group by country—election

by_country <- group_by(cmpdatalong, countryname, date)
nparties <- summarise(by_country, npart = n())
head(nparties)

Source: local data frame [6 x 3]
Groups: countryname

##

countryname date npart

1 Austria 199010 224
2 Austria 199410 280
3 Austria 199512 280
4 Austria 199910 224
5 Austria 200211 280
6 Austria 200610 280

is that correct?

Grouping operations: number of parties per election
corrected

group by country-election

by_country_unique <- distinct(cmpdatalong, countryname, date, party)
by_country_n <- group_by(by_country_unique, countryname, date)
nparties <- summarise(by_country_n, npart = n())

head(nparties, 10)

Source: local data frame [10 x 3]
Groups: countryname

##

countryname date npart
1 Austria 199010 4
2 Austria 199410 5
3 Austria 199512 5
4 Austria 199910 4
5 Austria 200211 5
6 Austria 200610 5
7 Austria 200809 6
8 Belgium 199111 11
9 Belgium 199505 10
10 Belgium 199906 9

Grouping operations: number of parties per election final

using "chaining"” -- no need for intermediate objects
nparties2 <- distinct(cmpdatalong, countryname, date, party) %>%
group_by(countryname, date) %>%

summarise(npart = n())
identical(nparties, nparties2)

[1] TRUE

Relational data bases

» invented by E. F. Codd at IBM in 1970

> A relational database is a collection of data organized as a set
of formally defined tables

> These tables can be accessed or reassembled in many different
ways without having to reorganize the underlying tables that
organize the data

» RDBMS: a relational database management system.
Examples include: MySQL, SQLite, PostgreSQL, Oracle. MS
Access is a lite version of this too.

» The standard user and application programmer interface to a
relational database is structured query language (SQL)

> keys

Example

» example: Database of Parties, Elections, and Governments
(DPEG) relational database

SELECT c.countryName, c.countryAbbrev, p.* FROM party AS p
LEFT JOIN country AS c
ON p.countryID = c.countryID

» simpler example: convert CMP data into relational tables for
countries, parties, elections, categories, and counts

Basic relational structures

> tables
» also known as “relations”
> tables define the forms of the data that are linked to other
data through key relations

> keys: how tables are cross-referenced
» primary key: an column in a table that uniquely identifies the
remaining data in the table
» foreign key: a field in a relational table that matches the
primary key column of another table
> join operations link tables in a structured query

Normal forms 1

“Normalizing” a database means creating a proper set of relations
First normal form: No Repeating Elements or Groups of Elements

head(select(cmpdata, countryname, partyname, date, per108, per110))

##
##
##
##
##
##
##

175
176
177
178
179
180

countryname
Austria
Austria
Austria
Austria
Austria
Austria

partyname date per108 per110

FP Freedom Party 199010 3 (0]
GA Green Alternative 199010 0 3

SP Social Democratic Party 199010 5 (0]
VP People's Party 199010 8 0

FP Freedom Party 199410 1 11

LF Liberal Forum 199410 0 0

Here, this is violated because of the wide format of per108 and
perl10. To solve this, we have to move this to long format.

Normal forms 2

Second normal form: No Partial Dependencies on a Concatenated
Key

head (cmpdataLong)

countryname party date category catcount

1 Austria 42420 199010 peri101 0
2 Austria 42110 199010 per101 0
3 Austria 42320 199010 peri101 0
4 Austria 42520 199010 peri101 5
5 Austria 42420 199410 peri101 0
6 Austria 42421 199410 per101 0

Here, the format is still violated, because party 42420 is repeated.
To solve this we need to create a party table and link to it using a
foreign key.

Normal forms 3

Third normal form: No Dependencies on Non-Key Attributes.
Every non-prime attribute of data in a table must be dependent on
a primary key.

head (cmpdataLlong)

countryname party date category catcount

1 Austria 42420 199010 peri101 0
2 Austria 42110 199010 peri101 0
3 Austria 42320 199010 peri101 0
4 Austria 42520 199010 peri101 5
5 Austria 42420 199410 peri101 0
6 Austria 42421 199410 peri101 0

Here, this is violated because election data repeats across multiple
values of the category count table, when it should have its own
table.

Non-relational data

> recently popularized because so much data is unstructured,
and dealing with new data forms in a classic relational setting
requires changing the entire schema

> non-relational systems typically define data using key-value
pairs

» example: JSON - see
http://kenbenoit.net/files/JSONexample. json

http://kenbenoit.net/files/JSONexample.json

Compression: sparse matrix format

used because many forms of matrix are very sparse - for example,
document-term matrixes

require(quanteda)

Loading required package: quanteda

myDfm <- dfm(inaugTexts, matrixType="dense", verbose=FALSE)

Note: matrixType dense is being phased out, try sparse instead.
myDfm

(S3) Document-feature matrix of: 57 documents, 9208 features.

how many cell counts are zeros
sum(myDfm==0) / (ndoc(myDfm) * nfeature(myDfm)) * 100

[1] 91.67372
object.size(myDfm)

4759304 bytes

