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Regression with categorical dependent variables

When the dependent variable is categorical, with > 2 categories

Example: Which party did you vote for?

I Data from the European Social Survey (2002/2003), British
sample

I Question: For which party did you vote in 2001? (Here we
only consider the Conservatives, Labour, and the Liberal
Democrats)

party

386 18.8 31.4 31.4
624 30.4 50.8 82.2
218 10.6 17.8 100.0

1228 59.8 100.0
824 40.2

2052 100.0

Conservative
Labour
Liberal Democrat
Total

Valid

other party/no answerMissing
Total

Frequency Percent Valid Percent
Cumulative

Percent



The multinomial logistic regression model

I We have data for n sets of observations (i = 1, 2, . . . n)

I Y is a categorical (polytomous) response variable with C
categories, taking on values 0, 1, . . . ,C − 1

I We have k explanatory variables X1,X2, . . . ,Xk

I The multinomial logistic regression model is defined by the
following assumptions:

I Observations Yi are statistically independent of each other
I Observations Yi are a random sample from a population where

Yi has a multinomial distribution with probability parameters:

π
(0)
i , π

(1)
i , . . . , π

(C−1)
i

I As with binomial logistic regression, we have to set aside one
category for a base category (hence the C − 1 parameters π)



The multinomial logistic regression model

The logit for each non-reference category j = 1, . . . ,C − 1 against
the reference category 0 depends on the values of the explanatory
variables through:

log

(
π
(j)
i

π
(0)
i

)
= α(j) + β

(j)
1 X1i + · · ·+ β

(j)
k Xki

for each j = 1, . . . ,C − 1 where α(j) and β
(j)
1 , . . . , β

(j)
k are

unknown population parameters



Multinomial distribution

Pr(Y1 = y1, . . . ,Yk = yk) =

{
n!

yj !···yk !π
(0)
1 · · ·π

(C−1)
k when

∑k
j=1 yj = n

0 otherwise

E(yij) = nπj

Var(yij) = nπj(1− πj)



Example: vote choice

Response variable: Party voted for in 2001

I Labour is the reference category, j = 0

I Conservatives are the j = 1 category

I Liberal Democrats will be j = 2

(note that this coding is arbitrary)

Explanatory variables:

I Age: continuous in years X1

I Educational level (categorical)
I lower secondary or less (omitted reference category)
I upper secondary (X2 = 1)
I post-secondary (X3 = 1)



If we were to fit binary logistic models

One model for the log odds of voting Convervative v. Labour:
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A second model for the log odds of voting Lib Dem v. Labour:
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Estimates of this model

Parameter Estimates

-1.861 .265 49.147 1 .000
.021 .004 24.804 1 .000 1.021 1.013 1.029
.638 .151 17.807 1 .000 1.892 1.407 2.544
.474 .225 4.422 1 .035 1.606 1.033 2.499

0b . . 0 . . . .
-1.809 .316 32.796 1 .000

.005 .005 1.044 1 .307 1.005 .995 1.015
1.026 .181 32.031 1 .000 2.791 1.956 3.982

.746 .263 8.068 1 .005 2.108 1.260 3.527
0b . . 0 . . . .

Intercept
age
[educ=post_sec]
[educ=upper_sec]
[educ=lower_sec]
Intercept
age
[educ=post_sec]
[educ=upper_sec]
[educ=lower_sec]

partya

Conservative

Liberal Democrat

B Std. Error Wald df Sig. Exp(B)
Lower
Bound

Upper
Bound

95% Confidence
Interval for Exp(B)

The reference category is: Labour.a. 

This parameter is set to zero because it is redundant.b. 



Interpreting β̂:
continuous X

Parameter Estimates

-1.861
.021 1.021
.638 1.892
.474 1.606

0 .
-1.809

.005 1.005
1.026 2.791

.746 2.108
0 .

Intercept
age
[educ=post_sec]
[educ=upper_sec]
[educ=lower_sec]
Intercept
age
[educ=post_sec]
[educ=upper_sec]
[educ=lower_sec]

party
Conservative

Liberal Democrat

B Exp(B)

I Holding education level constant, a one-year increase in age
multiplies the odds of voting Conservative rather than Labour by
1.021, i.e. increases them by 2.1%

I A five-year increase in age (controlling for education level) multiplies
the odds of voting Conservative rather than Labour by
exp(5 ∗ 0.021) = 1.0215 = 1.11, i.e. increases them by 11%

I Holding education level constant, a one-year increase in age
multiplies the odds of voting Lib Dem rather than Labour by 1.005,
i.e. increases them by 0.5%



Interpreting β̂:
categorical X Parameter Estimates

-1.861
.021 1.021
.638 1.892
.474 1.606

0 .
-1.809

.005 1.005
1.026 2.791

.746 2.108
0 .

Intercept
age
[educ=post_sec]
[educ=upper_sec]
[educ=lower_sec]
Intercept
age
[educ=post_sec]
[educ=upper_sec]
[educ=lower_sec]

party
Conservative

Liberal Democrat

B Exp(B)

I Holding age constant, the odds for someone with post-secondary
education of voting Conservative rather than Labour are 1.892 times
(89.2% higher than) the odds for someone with lower secondary or
less education

I Holding age constant, the odds for someone with upper secondary
education of voting Conservative rather than Labour are 1.606 times
(60.6% higher than) the odds for someone with lower secondary or
less education



Interpreting β̂:
categorical X Parameter Estimates

-1.861
.021 1.021
.638 1.892
.474 1.606

0 .
-1.809

.005 1.005
1.026 2.791

.746 2.108
0 .

Intercept
age
[educ=post_sec]
[educ=upper_sec]
[educ=lower_sec]
Intercept
age
[educ=post_sec]
[educ=upper_sec]
[educ=lower_sec]

party
Conservative

Liberal Democrat

B Exp(B)

I Holding age constant, the odds for someone with post-secondary
education of voting Lib Dem rather than Labour are 2.791 times
(179.1% higher than) the odds for someone with lower secondary or
less education

I Holding age constant, the odds for someone with upper secondary
education of voting Lib Dem rather than Labour are 2.108 times
(110.8% higher than) the odds for someone with lower secondary or
less education



Interpreting β̂ between
non-reference categories
of X

Parameter Estimates

-1.861
.021 1.021
.638 1.892
.474 1.606

0 .
-1.809

.005 1.005
1.026 2.791

.746 2.108
0 .

Intercept
age
[educ=post_sec]
[educ=upper_sec]
[educ=lower_sec]
Intercept
age
[educ=post_sec]
[educ=upper_sec]
[educ=lower_sec]

party
Conservative

Liberal Democrat

B Exp(B)

I Holding age constant, the odds for someone with post-secondary
education of voting Conservative rather than Labour are 1.178 times
(17.8% higher than) the odds for someone with upper secondary
education
Calculation: exp(0.638− 0.474) = exp(0.164) or 1.892/1.606

I Holding age constant, the odds for someone with upper secondary
education of voting Lib Dem rather than Labour are 0.756 times
(24.4% lower than) the odds for someone with post-secondary
education
Calculation: exp(0.746− 1.026) = exp(−0.28) or 2.108/2.791



Interpreting β̂ between
non-reference categories
of Y

Parameter Estimates

-1.861
.021 1.021
.638 1.892
.474 1.606

0 .
-1.809

.005 1.005
1.026 2.791

.746 2.108
0 .

Intercept
age
[educ=post_sec]
[educ=upper_sec]
[educ=lower_sec]
Intercept
age
[educ=post_sec]
[educ=upper_sec]
[educ=lower_sec]

party
Conservative

Liberal Democrat

B Exp(B)

log

(
π
(j)
i

π
(1)
i

)
= (α(1) − α(j)) + (β

(j)
1 β

(1)
1 )X1i + · · ·+ (β

(j)
k − β

(1)
k )Xki

for each j = 2, . . . ,C − 1

Holding age constant, the odds for someone with post-secondary
education of voting Lib Dem rather than Conservative are 1.47 times
(47.4% higher than) the odds for someone with lower secondary
education

Calculation: exp(1.026− 0.638) = exp(0.388) or 2.791/1.892



Computing fitted probabilities

I We fit a logit model for each non-reference category j

I Let L(j) = log(πi (j)/|pii (0)) — the log odds of a response in
category j rather than the reference category 0

I Probability of response in category j can be calculated as

π(j) = P(Y = j) =
exp(L(j))

1 + exp(L(1)) + · · ·+ exp(L(C−1))

I Probability of response in category 0 can be calculated as

π(0) = P(Y = 0) =
1

1 + exp(L(1)) + · · ·+ exp(L(C−1))



Fitted probabilities from the example

(with voting Labour as the reference category)

I Logit for voting Conservative rather than Labour:

L(Cons) = log(π
(Cons)
i /π

(Lab)
i )

= −1.861 + 0.021 ∗ age + 0.474 ∗ upper sec + 0.638 ∗ post sec

I Logit for voting Liberal Democrat rather than Labour:

L(Lib) = log(π
(Lib)
i /π

(Lab)
i )

= −1.809 + 0.005 ∗ age + 0.746upper sec + 1.026 ∗ post sec

I Estimated logits for (for example), a 55-year old with upper
secondary education:

L(Cons) = −1.861 + 0.021 ∗ (55) + 0.474 ∗ (1) + 0.638 ∗ (0) = −0.232

L(Lib) = −1.809 + 0.005 ∗ (55) + 0.746 ∗ (1) + 1.026 ∗ (0) = −0.788



More fitted probabilities from the example

I Probability of 55 year old with upper secondary education voting
Conservative:

π̂(Cons) =
exp(−0.232)

1 + exp(−0.232) + exp(−0.788)
=

0.793

2.248
= 0.35

I Probability of 55 year old with upper secondary education voting
Liberal Democrat:

π̂(Lib) =
exp(−0.788)

1 + exp(−0.232) + exp(−0.788)
=

0.455

2.248
= 0.20

I Probability of 55 year old with upper secondary education voting
Labour:

π̂(Lab) =
1

1 + exp(−0.232) + exp(−0.788)
=

1

2.248
= 0.44



for a categorical explanatory variable

Fitted probabilities of party choice given education, with age fixed
at 55 years:

Lower 
secondary 

Upper 
secondary 

Post- 
secondary 

Conservative 0.29 0.35 0.36 

Lib Dem 0.13 0.20 0.24 

Labour 0.59 0.44 0.39 



for a continuous explanatory variable

Fitted probabilities of party choice given age, with education fixed
at lower secondary or less:



for all three response categories



Confidence intervals for β̂

I These are calculated just as for binomial logits, using ±1.96σ̂β̂
I So the 95% confidence interval for an estimated coefficient is:

β̂(j) ± 1.96 ŝe(β̂(j))

I and the 95% confidence interval for an odds ratio is:(
exp[β̂(j) − 1.96 ŝe(β̂(j))]; exp[β̂(j) + 1.96 ŝe(β̂(j))]

)



Wald tests for β̂

I Wald tests are provided in the SPSS output by default

I Here, testing H0: β(j) = 0
i.e. null hypothesis that a given X has no effect on odds of
Y = j versus Y = 0

I But we often want to test the null hypothesis that a given X
has no effect on odds of any category of the response variable,
e.g.
H0 : β(1) = β(2) = · · · = β(C−1) = 0

I We can use likelihood ratio comparison test, in the usual way,
to test several coefficients at once



Likelihood ratio comparison tests

I Reminder: we compare two models:
I Model 1 is the simpler, restricted, model, with likelihood L1
I Model 2 is the more complex, full, model, with likelihood L2
I Must be nested: so Model 2 is Model 1 with some extra

parameters

I H0: more complex model is no better than simpler one; then
L1 and L2 will be similar, i.e. difference between them will be
small

I Likelihood ratio test statistic:

D = 2(logL2 − logL1) = (− 2logL1)− (−2logL2)

I Obtain p-value for tests statistic from χ2 distribution with
degrees of freedom equal to the difference in the degrees of
freedom in the two models (i.e. the number of extra
parameters in the larger model)



Likelihood ratio comparison tests: Example

We can test a more restricted model excluding age.

H0 : β
(Cons)
age = β

(Lib)
age = 0

I -2 log likelihood of Model 1, without age = 977.718

I -2 log likelihood of Model 2, including age = 951.778

I Difference in -2 log likelihoods = 25.940

I Difference in degrees of freedom = 2

I p-value for 25.940 on χ2 distribution with 2 d.f. < 0.001

I Reject H0; keep age in the model



Likelihood ratio comparison tests: Example

We can test a more restricted model excluding education.

H0 : β
(Cons)
educ2 = β

(Lib)
educ2 = β

(Cons)
educ3 = β

(Lib)
educ3 = 0

I -2 log likelihood of Model 1, without education = 992.019

I -2 log likelihood of Model 2, including education = 951.778

I Difference in -2 log likelihoods = 40.241

I Difference in degrees of freedom = 4

I p-value for 40.241 on χ2 distribution with 4 d.f. < 0.001

I Reject H0; keep education in the model



Ordinal response variables: An example

I Data from the U.S. General Social Survey in 1977 and 1989

I Response variable Y is the answer to the following item:
“A working mother can establish just as warm and secure a
relationship with her children as a mother who does not
work.”

I 1=Strongly disagree (SD), 2=Disagree (D), 3=Agree (A) and
4=Strongly agree (SA)

I In this and many other examples, the categories of the
response have a natural ordering

I A multinomial logistic model can be used here too, but it has
the disadvantage of ignoring the ordering

I An ordinal logistic model (proportional odds model) does
take the ordering into account

I This gives a model with fewer parameters to interpret



Cumulative probabilities

I Suppose response variable Y has C ordered categories
j = 1, 2, . . . ,C , with probabilities

P(Y = j) = π(j) for j = 1, . . . ,C

I In multinomial logistic model, we considered the C − 1 ratios

P(Y = j)/P(Y = 1) = π(j)/π(1) for j = 2, . . . ,C

and wrote down a model for each of them

I Now we will consider the C − 1 cumulative probabilities

γ(j) = P(Y ≤ j) = π(1) + · · ·+ π(j) for j = 1, . . . ,C − 1

and write down a model for each of them
I Note that γ(C) = P(Y ≤ C ) = 1 always, so it need not be

modelled



The ordinal logistic model

I Data: (Yi ,X1i , . . . ,Xki ) for observations i = 1, . . . , n, where

I Y is a response variable with C ordered categories
j = 1, . . . ,C , and probabilities π(j) = P(Y = j)

I X1, . . . ,Xk are k explanatory variables

I Observations Yi are statistically independent of each other

I The following holds for γ
(j)
i = P(Yi ≤ j) for each unit i and

each category j = 1, . . . ,C − 1:

log

(
γ
(j)
i

1− γ(j)i

)
= log

(
P(Yi ≤ j)

P(Yi > j)

)
= α(j)−(β1X1i+· · ·+βkXki )



The ordinal logistic model

I In other words, the ordinal logistic model considers a set of
dichotomies, one for each possible cut-off of the response
categories into two sets, of “high” and “low” responses

I This is meaningful only if the categories of Y do have an
ordering

I In our example, these cut-offs are
I Strongly disagree vs. (Disagree, Agree, or Strongly agree),

i.e. SD vs. (D, A, or SA)
I (SD or D) vs. (A or SA)
I (SD, D, or SA) vs. SA

I A binary logistic model is then defined for the log-odds of
each of these cuts



Parameters of the model

The model for the cumulative probabilities is

γ(j) = P(Y ≤ j) =
exp[α(j) − (β1X1 + · · ·+ βkXk)]

1 + exp[α(j) − (β1X1 + · · ·+ βkXk)]

The intercept terms must be α(1) < α(2) < · · · < α(C−1), to
guarantee that γ(1) < γ(2) < · · · < γ(C−1)

β1, β2, . . . , βk are the same for each value of j

I There is thus only one set of regression coefficients, not C − 1
as in a multinomial logistic model

I The curves for γ(1), . . . , γ(C−1) are “parallel” as seen below

I This is the assumption of “proportional odds”. The ordinal
logistic model is also known as the proportional odds model



Probabilities from the model

The probabilities of individual categories are

P(Y = 1) = γ(1) =
exp[α(1) − (β1X1 + · · ·+ βkXk)]

1 + exp[α(1) − (β1X1 + · · ·+ βkXk)]

P(Y = j) = γ(j) − γ(j−1) =
exp[α(j) − (β1X1 + · · ·+ βkXk)]

1 + exp[α(j) − (β1X1 + · · ·+ βkXk)]

− exp[α(j−1) − (β1X1 + · · ·+ βkXk)]

1 + exp[α(j−1) − (β1X1 + · · ·+ βkXk)]

for j = 2, . . . ,C − 1, and

P(Y = C ) = 1− γ(C−1) = 1− exp[α(C−1) − (β1X1 + · · ·+ βkXk)]

1 + exp[α(C−1) − (β1X1 + · · ·+ βkXk)]

Illustrated below with plots for a case with C = 4 categories.



Cumulative probabilities: An example
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Probabilities of individual categories: An example
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Estimation and inference

Everything here is unchanged from binary logistic models:

I Parameters are estimated using maximum likelihood
estimation

I Hypotheses of interest are typically of the form βj = 0, for one
or more coefficients βj

I Wald tests, likelihood ratio tests and confidence intervals are
defined and used as before



Back to the example

Response variable Y (variable warm): “A working mother can
establish just as warm and secure a relationship with her children
as a mother who does not work.”, with levels SD, D, A, and SA

Explanatory variables:

I yr89: a dummy variable for survey year 1989 (1=1989,
0=1977)

I white: a dummy variable for ethnic group white
(1=white, 0=non-white)

I age in years

I ed: years of education

I male: a dummy variable for men (1=Male, 2=Female)



Fitted model: An example

. ologit warm yr89 white age ed male

Ordered logistic regression Number of obs = 2293
LR chi2(5) = 298.31
Prob > chi2 = 0.0000

Log likelihood = -2846.6132 Pseudo R2 = 0.0498

----------------------------------------------------------------------------
warm | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
yr89 | .5282808 .0798763 6.61 0.000 .3717262 .6848353

white | -.3795009 .1182501 -3.21 0.001 -.6112669 -.1477348
age | -.0207738 .0024195 -8.59 0.000 -.0255159 -.0160318
ed | .0839738 .0131433 6.39 0.000 .0582135 .1097342

male | -.7269441 .0783997 -9.27 0.000 -.8806048 -.5732835
-------------+--------------------------------------------------------------

/cut1 | -2.443735 .2386412 -2.911463 -1.976007
/cut2 | -.6096001 .2331233 -1.066513 -.1526867
/cut3 | 1.279352 .2338585 .8209981 1.737707

----------------------------------------------------------------------------



Interpretation of the coefficients

I Exponentiated coefficients are interpreted as partial odds
ratios for being in the higher rather than the lower half of the
dichotomy

I here (SA, A, or D) vs. SD, (SA or A) vs. (D or SD),
and SA vs. (A, D, or SD)

I odds ratio is the same for each of these

I e.g. exp(β̂male) = 0.48: Controlling for the other explanatory
variables, men have 52% lower odds than women of giving a
response that indicates higher levels of agreement with the
statement

I e.g. exp(β̂ed) = 1.088: Controlling for the other explanatory
variables, 1 additional year of education is associated with a
8.8% increase in odds of giving a response that indicates
higher levels of agreement with the statement



Example with an interaction

Consider adding an interaction between sex and education.

Just to show something new, include it in the form of two variables:

gen male_ed=male*ed

gen fem_ed=(1-male)*ed

instead of using ed and male*ed as previously

I Both versions give the same model

I In this version, the coefficients of male ed and fem ed are the
coefficients of education for men and women respectively



Example with an interaction

This version of interaction can be tested using a likelihood ratio
test as before:

ologit warm yr89 white age male ed

estimates store mod1

ologit warm yr89 white age male male_ed fem_ed

lrtest mod1 .

Likelihood-ratio test LR chi2(1) = 4.48

(Assumption: mod1 nested in .) Prob > chi2 = 0.0344

or with a Wald test of the hypothesis that βmale ed = βfem ed:

test male_ed=fem_ed

( 1) [warm]male_ed - [warm]fem_ed = 0

chi2( 1) = 4.47

Prob > chi2 = 0.0345



Example: Fitted probabilities
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(Other variables fixed at: year 1989, white, male, 12 years of
education)



Example: Fitted probabilities
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Example: Fitted probabilities
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Assessing the proportional odds assumption

I The ordinal logistic model

log[γ(j)/(1− γ(j))] = α(j) − (β1X1 + . . . βkXk)

assumes the same coefficients β1, . . . , βk for each cut-off j

I This is good for the parsimony of the model, because it means
that the effect of an explanatory variable on the ordinal
response is described by one parameter

I However, it is also a restriction on the flexibility of the model,
which may or may not be adequate for the data

I There are a number of ways of checking the assumption

I Here we consider briefly only one, comparing (informally)
estimates and fitted probabilities between ordinal and
multinomial logistic model



Multinomial logistic model in the example
. mlogit warm yr89 white age male male_ed fem_ed, base(1)
------------------------------------------------------------------------------

warm | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
2D |

yr89 | .7358761 .1656333 4.44 0.000 .4112408 1.060511
white | -.4431508 .2464251 -1.80 0.072 -.9261352 .0398336

age | -.0038748 .0043447 -0.89 0.372 -.0123901 .0046406
male | -.2007845 .5167223 -0.39 0.698 -1.213542 .8119726

male_ed | .0780207 .0276012 2.83 0.005 .0239233 .1321181
fem_ed | .0538995 .0371462 1.45 0.147 -.0189057 .1267047
_cons | .6184256 .5438483 1.14 0.255 -.4474975 1.684349

-------------+----------------------------------------------------------------
3A |

yr89 | 1.097829 .1637353 6.70 0.000 .776914 1.418745
white | -.5317257 .2456104 -2.16 0.030 -1.013113 -.0503381

age | -.0245649 .0043948 -5.59 0.000 -.0331785 -.0159512
male | -.3240701 .5411645 -0.60 0.549 -1.384733 .7365928

male_ed | .1182817 .0289517 4.09 0.000 .0615373 .175026
fem_ed | .1214095 .0370969 3.27 0.001 .0487008 .1941181
_cons | 1.060008 .5468476 1.94 0.053 -.0117936 2.13181

-------------+----------------------------------------------------------------
4SA |

yr89 | 1.159963 .1811322 6.40 0.000 .8049508 1.514976
white | -.8293461 .2633927 -3.15 0.002 -1.345586 -.3131058

age | -.0306687 .0051191 -5.99 0.000 -.0407019 -.0206354
male | -.3319753 .6680166 -0.50 0.619 -1.641264 .9773132

male_ed | .1173827 .038081 3.08 0.002 .0427454 .1920201
fem_ed | .1865388 .0403865 4.62 0.000 .1073827 .265695
_cons | .3026709 .6050227 0.50 0.617 -.8831518 1.488494

------------------------------------------------------------------------------
(warm==1SD is the base outcome)



Ordinal vs. multinomial models in the example

I In the multinomial model, (more or less) all the coefficients at
least imply the same ordering of the categories

I e.g. for age: 0 (SD) > −0.004 (D) > −0.025 (A) > −0.031
(SA)

I this is not always the case: e.g. an example in the computer
class

I For fitted probabilities in our example:
I for most of the variables, the agreement in the strengths of

association is reasonable if not perfect — see plot for age
below

I The biggest difference is for period (1977 vs. 1989):
I the ordinal model forces the change (in cumulative odds) to be

the same for all cut-off points
I according the multinomial model, some categories have shifted

more than others between the two periods
I in particular, the shift away from “Strongly disagree” has been

a bit stronger than the ordinal model allows



Ordinal vs. multinomial: Fitted probabilities
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Ordinal vs. multinomial: Fitted probabilities

Model Year SD D A SA

Ordinal 1977 0.19 0.41 0.31 0.09
1989 0.13 0.35 0.38 0.14

Multinomial 1977 0.19 0.40 0.32 0.08
1989 0.08 0.37 0.43 0.12

(white man, aged 45, 12 years of education)



Latent-variable motivation of the model

I The ordinal logit model can also be derived from a model for
a hypothetical unobserved (latent) continuous response
variable Y ∗

I Suppose
Y ∗ = β1x1 + . . .+ βkxk + ε,

where ε is a random error term which has standard logistic
distribution: a “bell-shaped” distribution quite similar to the
normal, with mean 0 and variance π2/3

I Suppose that we do not observe Y ∗ but a grouped version Y :

1
2 3

4
α1 α2 α3





I In other words, we record Y = j if Y ∗ is in the interval
αj−1 ≤ Y ∗ < αj (where α0 = −∞ and αC =∞)



Latent-variable motivation of the model

I Then the model for Y (rather than Y ∗) is an ordinal logit
(proportional odds model)

I This derivation in terms of a hypothetical underlying Y ∗ is
sometimes useful for motivating the model and deriving some
of its properties

I and sometimes Y ∗ even makes substantive sense

I Other models also have analogous latent-variable derivations
I if C = 2 (only one cut-off point), we get the binary logit model

I if ε is assumed to have a standard normal (rather than logistic)
distribution, we get the (ordinal or binary) probit model

I the latent-variable motivation of the multinomial logistic
model is completely different


