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Collinearity continued

I Stone (1945):

Var(β̂OLS
k ) =

1

N − K

σ2y
σ2k

1− R2

1− R2
k

I σ2
y is the estimated variance of Y

I σ2
k is the estimated variance of the kth regressor

I R2
k is the R2 from a regression of the kth regressor on all the

other independent variables

I So collinearity’s main consequence is:
I the variance of β̂OLS

k decreases as the range of Xk increases
(σ2

k higher)
I the variance of β̂OLS

k increases as the variables in X become
more collinear (R2

k higher) and becomes infinite in the case of
exact multicollinearity

I the variance of β̂OLS
k decreases as R2 rises. sp that the effect

of a high R2
k can be offset by a high R2



Limited dependent variables

I Some dependent variables are limited in the possible values
they may take on

I might be binary (aka dichotomous)
I might be counts
I might be unordered categories
I might be ordered categories

I For these methods, OLS and the CLRM will fail to provide
desirable estimates – in fact OLS easily produces non-sensical
results

I Focus here will be on binary and count limited dependent
variables



Binary dependent variables

I Remember OLS assumptions
I εi has a constant variance σ2 (homoskedasticity)
I εi are uncorrelated with one another
I εi is normally distributed (necessary for inference)
I Y is unconstrained on R – implied by the lack of restrictions

on the values of the independent variables (except that they
cannot be exact linear combinations of each other)

I This cannot work if Y = {0, 1} only

E (Yi ) = 1 · P(Yi = 1) + 0 · P(Yi = 0) = P(Yi = 1)

=
∑

bkXik = Xib

I But if Yi only takes two possible values, then ei = Ŷi −Yi can
only take on two possible values (here, 0 or 1)



Why OLS is unsuitable for binary dependent variables

I From above, P(Yi = 1) = Xib – hence this is called a linear
probability model

I if Yi = 0, then (0 = Xib + ei ) or (ei = −Xib)
I if Yi = 1, then (1 = Xib + ei ) or (ei = 1− Xib)

I We can maintain the assumption that E(ei ) = 0:

E (ei ) = P(Yi = 0)(−Xib) + P(Yi = 1)(1− Xib)

= −(1− P(Yi = 1))P(Yi = 1) + P(Yi = 1)(1− P(Yi = 1))

= 0

I As a result, OLS estimates are unbiased, but: they will not have a
constant variance

I Also: OLS will easily predict values outside of (0, 1) even without
the sampling variance problems – and thus give non-sensical results



Non-constant variance

Var(ei ) = E (e2i )− (E (ei ))2

= E (e2i )− 0

= P(Yi = 0)(−Xib)2 + P(Yi = 1)(1− Xib)2

= (1− P(Yi = 1))(P(Yi = 1))2 + P(Yi = 1)(1− P(Yi = 1))2

= P(Yi = 1)(1− P(Yi = 1))

= Xib(1− Xib)

I Hence the variance of ei varies systematically with the values of Xi

I Inference from OLS for binary dep. variables is therefore invalid



Back to basics: the Bernoulli distribution

I The Bernoulli distribution is generated from a random variable
with possible events:

1. Random variable Yi has two mutually exclusive outcomes:

Yi = {0, 1}
Pr(Yi = 1|Yi = 0) = 0

2. 0 and 1 are exhaustive outcomes:

Pr(Yi = 1) = 1− Pr(Yi = 0)

I Denote the population parameter of interest as π: the
probability that Yi = 1

Pr(Y1 = 1) = π

Pr(Yi = 0) = 1− π



Bernoulli distribution cont.

I Formula:

Yi = fbern(yi |π) =

{
πyi (1− π)1−yi for yi = 0, 1
0 otherwise

I Expectation of Y is π

E (Yi ) =
∑
i

yi f (Yi )

= 0 · f (0) + 1 · f (1)

= 0 + π

= π



Introduction to maximum likelihood

I Goal: Try to find the parameter value β̃ that makes E (Y |X , β) as
close as possible to the observed Y

I For Bernoulli: Let pi = P(Yi = 1|Xi ) which implies
P(Yi = 0|Xi ) = 1− Pi . The probability of observing Yi is then

P(Yi |Xi ) = PYi

i (1− Pi )
1−Yi

I Since the observations can be assumed independent events, then

P(Yi |Xi ) =
N∏
i=1

PYi

i (1− Pi )
1−Yi

I When evaluated, this expression yields a result on the interval (0, 1)
that represents the likelihood of observing this sample Y given X if
β̂ were the “true” value

I The MLE is denoted as β̃ for β that maximizes
L(Y |X , b) = max L(Y |X , b)



MLE example: what π for a tossed coin?MAXIMUM LIKELIHOOD EXAMPLE

0.5

Y_i P^yi (1-P)^(1-yi) L ln L

0 1 0.5 0.5 -0.693147

1 0.5 1 0.5 -0.693147

1 0.5 1 0.5 -0.693147

0 1 0.5 0.5 -0.693147

1 0.5 1 0.5 -0.693147

1 0.5 1 0.5 -0.693147

0 1 0.5 0.5 -0.693147

1 0.5 1 0.5 -0.693147

1 0.5 1 0.5 -0.693147

1 0.5 1 0.5 -0.693147

Likelihood 0.0009766

Log-Likelihood -6.931472

0.6

Y_i P^yi (1-P)^(1-yi) L ln L

0 1 0.4 0.4 -0.916291

1 0.6 1 0.6 -0.510826

1 0.6 1 0.6 -0.510826

0 1 0.4 0.4 -0.916291

1 0.6 1 0.6 -0.510826

1 0.6 1 0.6 -0.510826

0 1 0.4 0.4 -0.916291

1 0.6 1 0.6 -0.510826

1 0.6 1 0.6 -0.510826

1 0.6 1 0.6 -0.510826

Likelihood 0.0017916

Log-Likelihood -6.324652



MLE example continued
0.7

Y_i P^yi (1-P)^(1-yi) L ln L

0 1 0.3 0.3 -1.203973

1 0.7 1 0.7 -0.356675

1 0.7 1 0.7 -0.356675

0 1 0.3 0.3 -1.203973

1 0.7 1 0.7 -0.356675

1 0.7 1 0.7 -0.356675

0 1 0.3 0.3 -1.203973

1 0.7 1 0.7 -0.356675

1 0.7 1 0.7 -0.356675

1 0.7 1 0.7 -0.356675

Likelihood 0.0022236

Log-Likelihood -6.108643

0.8

Y_i P^yi (1-P)^(1-yi) L ln L

0 1 0.2 0.2 -1.609438

1 0.8 1 0.8 -0.223144

1 0.8 1 0.8 -0.223144

0 1 0.2 0.2 -1.609438

1 0.8 1 0.8 -0.223144

1 0.8 1 0.8 -0.223144

0 1 0.2 0.2 -1.609438

1 0.8 1 0.8 -0.223144

1 0.8 1 0.8 -0.223144

1 0.8 1 0.8 -0.223144

Likelihood 0.0016777

Log-Likelihood -6.390319



MLE example in R

> ## MLE example

> y <- c(0,1,1,0,1,1,0,1,1,1)

> coin.mle <- function(y, pi) {

+ lik <- pi^y * (1-pi)^(1-y)

+ loglik <- log(lik)

+ cat("prod L = ", prod(lik), ", sum ln(L) = ", sum(loglik), "\n")

+ (mle <- list(L=prod(lik), lnL=sum(loglik)))

+ }

> ll <- numeric(9)

> pi <- seq(.1,.9,.1)

> for (i in 1:9) (ll[i] <- coin.mle(y, pi[i])$lnL)

prod L = 7.29e-08 , sum ln(L) = -16.43418

prod L = 6.5536e-06 , sum ln(L) = -11.93550

prod L = 7.50141e-05 , sum ln(L) = -9.497834

prod L = 0.0003538944 , sum ln(L) = -7.946512

prod L = 0.0009765625 , sum ln(L) = -6.931472

prod L = 0.001791590 , sum ln(L) = -6.324652

prod L = 0.002223566 , sum ln(L) = -6.108643

prod L = 0.001677722 , sum ln(L) = -6.390319

prod L = 0.0004782969 , sum ln(L) = -7.645279

> plot(pi, ll, type="b")



MLE example in R: plot
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From likelihoods to log-likelihoods

P(Yi |Xi ) =
N∏
i=1

PYi
i (1− Pi )

1−Yi

ln L(Y |X , b) =
N∑
i=1

(Yi lnpi + (1− Yi ) ln(1− pi ))

If b̃ maximizes L(Y |X , b) then it also maximizes ln L(Y |X , b)

Properties:

I asymptotically unbiased, efficient, and normally distributed

I invariant to reparameterization

I maximization is generally solved numerically using computers
(usually no algebraic solutions)



Transforming the functional form

I Problem: the linear functional form is inappropriate for
modelling probabilities

I the linear probability model imposes inherent constraints about
the marginal effects of changes in X , while the OLS assumes a
constant effect

I this problem is not solvable by “usual” remedies, such as
increasing our variation in X or trying to correct for
heteroskedasticity

I When dealing with limited dependent variables in general this
is a problem, and requires a solution by choosing an
alternative functional form

I The alternative functional form is based on a transformation
of the core linear model



The logit transformation

Question: How to transform the functional form Xβ to eliminate
the boundary problems of 0 < pi < 1 ?

1. Eliminate the upper bound of pi = 1 by using odds ratio:

0 <
pi

(1− pi )
< +∞

this function is positive only, and as pi → 1, pi
(1−pi ) →∞

2. Eliminate the lower bound of pi = 0 by taking the logarithm
of the odds ratio:

−∞ < ln

(
pi

1− pi

)
< +∞

This transformation is known as logit and stands for the log of the
odds ratio.



Expressing pi in terms of the logit function

E (Yi ) = Xiβ = ln

(
pi

1− pi

)
Xiβ = ln

(
pi

1− pi

)
eXiβ = epi − e1−pi

pi =
eXiβ

1 + eXiβ

=

(
e−Xiβ

e−Xiβ

)(
eXiβ

1 + eXiβ

)
=

1

1 + e−Xiβ



Alternative alternative functional forms

I The logit form is the most commonly used transformation of
the linear Xβ, but other choices are possible

I Example: we could have used the cumulative distribution
function of the normal distribution, defined as

F (z) =

∫ z

−∞

1√
2π

e
−u2

2 du

= Φ(z)

This functional form is known as the probit model, standing
for “probability unit”

I Other possibilities include Urban, Gompertz, etc. found in
Aldrich and Nelson p33



Logit versus probit
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Back to the example

I Y = Won a seat (1=yes, 0=no)

I X1 = incumbency (0=challenger, 1=incumbent)

I X2 = spending (continuous variable, measures in euros)

I X3 = spendingXinc (interaction of X1 and X2)

I Multiple binary logistic regression model:

logit(π) = log

(
π̂

1− π̂

)
= α̂ + β̂1X1 + β̂2X2 + β̂3X3

I log (estimated odds of winning seat) =
α̂ + β̂1Xincumb + β̂2Xspending + β̂3Xinc∗spending



Estimated logit model: Campaign spending example

. logit wonseat incumb spend_total spend_totalXinc

Iteration 0: log likelihood = -301.55276

Iteration 1: log likelihood = -188.70741

Iteration 2: log likelihood = -182.41553

Iteration 3: log likelihood = -182.11942

Iteration 4: log likelihood = -182.119

Iteration 5: log likelihood = -182.119

Logistic regression Number of obs = 463

LR chi2(3) = 238.87

Prob > chi2 = 0.0000

Log likelihood = -182.119 Pseudo R2 = 0.3961

------------------------------------------------------------------------------

wonseat | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

incumb | 3.200883 .8391721 3.81 0.000 1.556136 4.84563

spend_total | .0001604 .0000232 6.92 0.000 .0001149 .0002058

spend_tota~c | -.0000649 .0000428 -1.52 0.130 -.0001488 .000019

_cons | -3.901699 .429417 -9.09 0.000 -4.743341 -3.060057

------------------------------------------------------------------------------



(Note that this also “works” — but is wrong)

. regress wonseat incumb spend_total spend_totalXinc

Source | SS df MS Number of obs = 463

-------------+------------------------------ F( 3, 459) = 123.16

Model | 47.361442 3 15.7871473 Prob > F = 0.0000

Residual | 58.8372621 459 .128185756 R-squared = 0.4460

-------------+------------------------------ Adj R-squared = 0.4423

Total | 106.198704 462 .229867325 Root MSE = .35803

------------------------------------------------------------------------------

wonseat | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

incumb | .560078 .0944139 5.93 0.000 .3745409 .745615

spend_total | .00002 2.31e-06 8.65 0.000 .0000155 .0000246

spend_tota~c | -7.82e-06 4.47e-06 -1.75 0.081 -.0000166 9.67e-07

_cons | -.0498086 .0322345 -1.55 0.123 -.1131542 .0135369

------------------------------------------------------------------------------



Example in odds-ratios rather than logits

. logit wonseat incumb spend_total spend_totalXinc, or

Iteration 0: log likelihood = -301.55276

Iteration 1: log likelihood = -188.70741

Iteration 2: log likelihood = -182.41553

Iteration 3: log likelihood = -182.11942

Iteration 4: log likelihood = -182.119

Iteration 5: log likelihood = -182.119

Logistic regression Number of obs = 463

LR chi2(3) = 238.87

Prob > chi2 = 0.0000

Log likelihood = -182.119 Pseudo R2 = 0.3961

------------------------------------------------------------------------------

wonseat | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

incumb | 24.5542 20.6052 3.81 0.000 4.740469 127.1834

spend_total | 1.00016 .0000232 6.92 0.000 1.000115 1.000206

spend_tota~c | .9999351 .0000428 -1.52 0.130 .9998512 1.000019

------------------------------------------------------------------------------



Interpreting exponentiated coefficients

I So odds of winning if you are incumbent are
e3.200883 = 24.554 greater for incumbents than for challengers

I For challengers, the odds of winning increase by
e .0001604 = 1.00016 for each e1 more spent

I So if a challenger spent e10,000 more, then his or her odds of
winning would increase by e10000∗.0001604 = 4.972884

I If an incumbent spent e1 more, odds of winning would
increase by e .0001604−.0000649 = 1.000096

I If an incumbent spent e10,000 more, then his or her odds of
winning would change by e10000∗(.0001604−.0000649) = 2.598671



Interpreting fitted probabilities

I As with linear regression models, often useful to present a
selection of fitted probabilities to illustrate the model

I Formula for translating the estimated logit into estimated
probability:

π̂i =
1

1 + e−Xiβ

where Xiβ = α + β1X1i + · · ·+ βkXki

I This is the same as saying that

log

(
π̂

1− π̂

)
== α̂ + β̂1X1 + β̂2X2 + β̂3X3

I Usually better to interpret interms of π̂ rather than log odds

I By exponentiating a coefficient βk , we get relative change in
(un-logged) odds of Y = 1 for a one-unit increase in Xk



Unexponentiated coefficients

. logit wonseat incumb spend_total spend_totalXinc

Iteration 0: log likelihood = -301.55276

Iteration 1: log likelihood = -188.70741

Iteration 2: log likelihood = -182.41553

Iteration 3: log likelihood = -182.11942

Iteration 4: log likelihood = -182.119

Iteration 5: log likelihood = -182.119

Logistic regression Number of obs = 463

LR chi2(3) = 238.87

Prob > chi2 = 0.0000

Log likelihood = -182.119 Pseudo R2 = 0.3961

------------------------------------------------------------------------------

wonseat | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

incumb | 3.200883 .8391721 3.81 0.000 1.556136 4.84563

spend_total | .0001604 .0000232 6.92 0.000 .0001149 .0002058

spend_tota~c | -.0000649 .0000428 -1.52 0.130 -.0001488 .000019

_cons | -3.901699 .429417 -9.09 0.000 -4.743341 -3.060057

------------------------------------------------------------------------------



Interpreting coefficients: example

In our example, the estimated probability of winning a seat for a
challenger is therefore:

log(estimated odds of winning seat) =

−3.902 + 3.2009Xincumb + .00016Xspending − .00006Xinc∗spending

I (for a challenger) Each additional e1 increases the log odds of
winning by .00016

I (for a challenger) Each additional e1 multiplies the odds of
being a volunteer by e .00016 = 1.00016

I (regardless of spending) Being an incumbent multiplies the
odds of being a volunteer by e3.200883 = 24.5542



Interpreting coefficients on dummy variables

I In a multiple logistic regression these are adjusted odds ratios,
adjusting or controlling for the other explanatory variables in
the model

I Holding constant the values of other X variables, the log odds
is β units higher for Xdummy = 1 than when Xdummy = 0

I The odds of Y = 1 for Xdummy = 1 are eβdummy times the odds
of Y = 1 for Xdummy = 0

I For polytomous categorical X variables, with c categories and
(c − 1) dummy variables, each estimated coefficient compares
the odds for the category of interest to the reference category



More on interpreting logit coefficients

The problem: How do we interpret coefficents in terms of
Pr(Y = 1) for a one-unit change in X?

1. We can compute fitted values on probabilities using the
formula for π̂i = 1

1+e−Xiβ
:

. clear

. set obs 9

obs was 0, now 9

. egen spendx = fill(0 5000 10000 15000 20000 25000 30000 40000)

. gen prchall = 1 / (1 + exp(-1*(-3.902 + .00016*spendx)))

. gen princ = 1 / (1 + exp(-1*(-3.902 + 3.2009*1 + .00016*spendx -.00006*1*spendx)))

. list, noobs clean

spendx prchall princ

0 .0198014 .3315684

5000 .0430248 .4498937

10000 .0909575 .5741736

15000 .1821274 .6897391

20000 .331369 .7856498

25000 .5244804 .858015

30000 .7105383 .9087859

35000 .8452733 .9426163

40000 .9240015 .9643911

Note: We have to make decisions about what to hold constant



Interpreting logit coefficients cont.

2. We can use graphical methods plotting changes pi by X :
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Interpreting logit coefficients cont.

a slightly prettier version, with separate curves for both challengers
and incumbents:



Interpreting logit coefficients cont.

3. We can compute first differences to show the effect of
changes in X on pi :

Incumbent v. Challenger Spending Effects / 33 

 

 

 

 

 

 

 

 

Table 5. First Differences in Spending Level Changes on Probability of Winning a Seat.  

Computed from Table 4; standard errors based on parametric bootstrapping using CLARIFY 

(King, Tomz and Wittenberg 2000). 

    Increase in Probability of Winning a Seat 

Change in % 

Spending (!) Challengers Incumbents 

From: To: Mean S.E. Mean S.E. 

0 5 0.05 (0.008) 0.05 (0.049) 

5 10 0.14 (0.018) 0.12 (0.065) 

10 15 0.26 (0.042) 0.22 (0.055) 

5 15 0.41 (0.058) 0.34 (0.112) 

 

 

 

 

 

I we have to choose plausible differences
I fitted values must be computed for each From, To point
I the calculation of standard errors is a different matter we have

not yet covered (but will in Week 9)



Interpreting logit coefficients cont.

4. We can use derivative methods to show the instantaneous
effect of changes in Xj on P(Yi = 1):

d π̃

dXj
=

d

dXj

[
1 + eXj β̃j−X∗β̃∗

]−1
= β̃j π̃(1− π̃)

I so this depends on the size of β̃, which is the estimate of the
coefficient

I it also depends on the size of π̃
I this is maximized at π̃ = 0.5
I at π̃ = 0.5, this quantity is .5(1 − .5) = 0.25
I so β̃/4 is always the maximum instantaneous effect
I this provides a very crude “rule of thumb” for interpreting

logit coefficients: divide coefficient by four



Another example

I Socio-demographic determinants of infant mortality

I Response variable:
Baby dies before first birthday (1 = yes, 0 = no)

I Explanatory variables:

MATAGE Maternal age in years
BI Length of preceding birth interval in months

(time between birth of child and last child)
URBAN Type of region of residence (1=urban, 0=rural)
MATED Maternal education (1 = primary+, 0 = none)



Interaction between two categorical explanatory variables

Variable β̂

Constant -1.70
MATAGE 0.04
BI -0.03
URBAN -0.70
MATED -0.78
URBAN × MATED 0.50

I Interaction between mothers region of residence and level of
education

I Logit = -1.70 + 0.04*MATAGE – 0.03*BI – 0.70*URBAN –
0.78*MATED + 0.50*URBAN*MATED



Interaction between two categorical explanatory variables

I Logit = -1.70 + 0.04*MATAGE – 0.03*BI – 0.70*URBAN –
0.78*MATED + 0.50*URBAN*MATED

I Let A = −1.70 + 0.04 ∗MATAGE0.03 ∗ BI

Education (MATED)

Region (URBAN) None (0) Primary+ (1)

Rural (0) A A− 0.78
Urban (1) A− 0.70 A− 0.70 − 0.78 + 0.5 = A− 0.98



Interaction between two categorical explanatory variables

I Convert the table of logits into a table of odds

I In this table, B = exp(A), which cancels out when we take
ratios of odds

I Use the table to calculate a selection of odds ratios to examine
joint effects of education and region on mortality risks

Education (MATED)

Region (URBAN) None (0) Primary+ (1)

Rural (0) B B exp(−0.78) = B × 0.46
Urban (1) B exp(−0.70) = B × 0.50 B exp(−0.98) = B × 0.38



Some odds ratios to illustrate the interaction effects

Education (MATED)

Region (URBAN) None (0) Primary+ (1)

Rural (0) B B exp(−0.78) = B × 0.46
Urban (1) B exp(−0.70) = B × 0.50 B exp(−0.98) = B × 0.38

I Conditional on MATED=0 (mother has no education)

Odds(Urban)

Odds(Urban)
=

0.50

1
= 0.50 = exp(−0.70)

I Conditional on MATED=0 (mother has no education)

Odds(Urban)

Odds(Urban)
=

0.38

0.46
= 0.83 = exp(−0.98− (−0.78))



Some odds ratios to illustrate the interaction effects

Education (MATED)

Region (URBAN) None (0) Primary+ (1)

Rural (0) B B exp(−0.78) = B × 0.46
Urban (1) B exp(−0.70) = B × 0.50 B exp(−0.98) = B × 0.38

I Conditional on URBAN=0 (rural)

Odds(Primary+)

Odds(None)
=

0.46

1
= 0.46 = exp(−0.78)

I Conditional on URBAN=1 (urban)

Odds(Primary+)

Odds(None)
=

0.38

0.50
= 0.76 = exp(−0.98− (−0.70))



Some fitted probabilities to further illustrate the interaction

I For a 30-year old woman with 2 years since her last child

Education (MATED)
Region (URBAN) None (0) Primary+ (1)

Rural (0) 0.228 0.119
Urban (1) 0.128 0.100

I Combination of no education and rural residence increases
chances of infant mortality



Interaction between two continuous explanatory variables

Variable β̂

Constant -1.68
MATAGE 0.05
BI -0.04
URBAN -0.68
MATED -0.80
URBAN × MATAGE -0.0007

I Interaction between age of mother and time between birth of
child and last child

I Logit = –1.68 + 0.05*MATAGE – 0.04*BI – 0.68*URBAN –
0.80*MATED – 0.0007*MATAGE*BI



Interaction between two continuous explanatory variables

I Logit = –1.68 + 0.05*MATAGE – 0.04*BI – 0.68*URBAN –
0.80*MATED – 0.0007*MATAGE*BI

I Let A = –1.68 – 0.68*URBAN – 0.80*MATED

I Make a table showing estimated logits for a selection of values
of MATAGE and BI



Interaction between two continuous explanatory variables

I Convert the table of logits into a table of odds

I In this table, B = exp(A), which cancels out when we take
ratios of odds

I Use the table to calculate a selection of odds ratios to
examine joint effects of maternal age and birth interval on
mortality risks



Some odds ratios to illustrate the interaction

I Conditional on MATAGE=20 (mother is 20 years old)

Odds(BI = 12)

Odds(BI = 36)
=

1.42

0.39
= 3.64

I Conditional on MATAGE=40 (mother is 20 years old)

Odds(BI = 12)

Odds(BI = 36)
=

3.27

0.64
= 5.11

I The effect of birth interval on infant mortality risks is greater
for older than for younger mothers



Statistical significance in MLE

I Null hypothesis: βk = 0

I Alternative hypothesis: βk 6= 0

I Test statistic is the ratio of the estimated coefficient to its
standard error:

zk =
β̂k

ŝe(β̂k)

I This zk can be compared to the standard normal distribution ¡

I If |zk | > 1.96, then reject H0 at the α = .05 significance level



Wald tests for single regression coefficients

I The Wald test statistic is the square of the z statistic:

χ2 =

(
β̂k

ŝe(β̂k)

)2

I Compare this to χ2 distribution with df=1

I SPSS automatically calculates multivariate Wald test for
polytomous categorical explanatory variables

I In Stata, nltest

I More on significance tests and model selection next week



Confidence intervals for coefficients

I Approximate 95% confidence intervals for βk is:

β̂k + /− 1.96σ̂βk

I Approximate 95% confidence interval for population odds
ratio eβk is

e β̂k−1.96σ̂βk toe β̂k+1.96σ̂βk

I Note: This interval is asymmetric: its lower limit will be closer
to the estimated odds ratio than upper limit will be

I To use the confidence interval to test H0, reject H0 if the
interval contains 1.0



Likelihood ratio comparison test

I An alternative way of testing coefficients for significance
I Individual coefficients
I Several coefficients at once – including a categorical variable

partitioned into multiple dummies, or combinations of separate
variables

I Compare the likelihoods of two models: one including the
variable(s) in question, one excluding them

I Likelihood ∝ probability of obtaining the observed pattern of
results in the sample if that model were true (the larger the
value, the better)

I Likelihood ratio test preferable to Wald test in small samples



Likelihood ratio comparison test

Consider two models:

I Model 1 is the simpler model, with likelihood L1
I Model 2 is the more complex model, with likelihood L2

(nested do that M2 is M1 with some extra parameters)

H0: more complex model is no better than simpler one

I If H0 is true, then L1 and L2 will be similar – in other words,
the ratio will be close to 1.0

I Instead of comparing “raw” likelihoods, we compare
−2 log − likelihood

I Likelihood ratio test statistic:

D = 2(logL2 − logL1 − logL1) = (−2logL1)− (−2logL2)



Likelihood ratio comparison test

Consider two models:

I If H0 is true, then D ∼ χ2 with degrees of freedom equal to
the difference in the degrees of freedom in the two models
(i.e. the number of extra parameters in the larger model)

I Small p-value for test statistic = evidence against H0 —
evidence that the bigger model is better, and that we should
keep the extra variables

I Large p-value for test statistic = evidence for H0 — evidence
that the bigger model is no better, and that we should drop
the extra variables



Goodness of fit

I Wald and likelihood ratio tests are tests of relative fit;
compare nested models with more/fewer parameters

I Testing absolute fit is more difficult
I Need to, in some way, compare observed and expected values.

For each unit (e.g.item respondent, in a survey data set),
compare:

I Observed value = value of Y (0 or 1)
I Expected value = predicted probability that Y = 1, i.e. π̂i

I Various statistics exist, some much better than others
I Pearson χ2 goodness of fit test
I Hosmer and Lemeshow goodness of fit test
I Classification table and pseudo-R2 measures



Pearson χ2 goodness of fit test

I General form of Pearson χ2

χ2 =
∑ (observed− expected)2

expected

I For the logistic regression model, calculation is

χ2 =
n∑

i=1

(Yi − π̂i )2

π̂i

I When H0 is true, test statistic follows a distribution with
df = n − k (where k is number of model parameters)

I Caution: this only works when expected values are each > 5
and probabilities are < 1

I So we cannot really use the statistic in this form, since we
need to generate larger expected values



Hosmer & Lemeshow goodness of fit test

1. Arrange the observations in order or their predicted
probabilities

2. Put them into g groups (denoted j = 1, 2, . . . , J of
approximately equal sizes
The idea is the units in the same group should have similar
predicted probabilities, and therefore similar values on the
explanatory variables

3. For each group, obtain
I Number of cases with observed Y = 1, Y1j

I Sum of predicted probabilities that Y = 1, π̂1j
I Number of cases with observed Y = 0, Y0j

I Sum of predicted probabilities that Y = 0, π̂0j



Hosmer & Lemeshow goodness of fit test

4. Calculate Hosmer and Lemeshow test statistic:

χ2 =
J∑

j=1

[
(Y1j − π̂1j)2

π̂1j
+

(Y0j − π̂0j)2

π̂0j

]

5. Obtain the p-value: test statistic ∼ χ2 with df = (G − 2)

6. H0: data were generated by the fitted model
I If p is small, reject H0, infer model is not a good fit
I If p is large, fail to reject H0, infer model is a good fit



Hosmer & Lemeshow example
From class/homework:

Hosmer and Lemeshow Test

41.205 8 .000
Step
1

Chi-square df Sig.

Contingency Table for Hosmer and Lemeshow Test

405 362.272 96 138.728 501
337 351.473 162 147.527 499
350 366.788 182 165.212 532
342 345.888 170 166.112 512
318 330.320 181 168.680 499
334 355.056 214 192.944 548
329 346.588 221 203.412 550
364 326.812 172 209.188 536
307 306.454 220 220.546 527
313 307.349 279 284.651 592

1
2
3
4
5
6
7
8
9
10

Step
1

Observed Expected

currently using a
modern method of
contraception = no

Observed Expected

currently using a
modern method of
contraception = yes

Total



Classification table

I Classify:
I π̂i > 0.5 as a predicted Ŷi = 1
I π̂i < 0.5 as a predicted Ŷi = 0

I Then compare observed and predicted frequencies for Y = 1
and Y = 0

Classification Tablea

3332 67 98.0
1819 78 4.1

64.4

Observed
no
yes

currently using a modern
method of contraception

Overall Percentage

Step 1
no yes

currently using a
modern method of

contraception Percentage
Correct

Predicted

The cut value is .500a. 

I A rather crude measure of how well the model fits the data,
since it does not tell you how close your incorrect predictions
were to correct predictions

I If proportion of Y = 1 is rare, then so all π̂i > 0.5, so fit may
look very poor according to this diagnostic



Pseudo R2 measures

I There are many of these, and little agreement on which one is
best

I Broadly speaking, they involve comparing the likelihood of the
null model (model containing only an intercept), LN , with the
likelihood of the model of interest, L1, e.g.

Pseudo−R2 =
−2logLN − (−2logL1)

−2logLN

I SPSS reports two: Cox & Snell and Nagerlkerke, which are
variations on the general idea

I Can be interpreted as proportional improvement in fit, but not
as explained variance

I Not really common to rely on these – and are better avoided


