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Quadratic 51X + £2X2 v. B log(X)

» Quadratic allows change in relationship (parabolas), whereas
logarithmic transformation is monotone

» Log transformations are for capturing multiplicative effects of
increases

» May be very similar in some contexts



Model selection and evaluation

> Using a fitted regression model, we can

> Interpret the implications of the model using estimated
regression coefficients, their confidence intervals and fitted
values

» Use the model to predict future values of the response
» However, both of these are likely to be misleading if the model
is not (approximately) correct, i.e. if it is misspecified
» Need to have tools for evaluating and comparing models, in
order to identify correctly specified ones



Tasks of model evaluation

» Finding a model with correct specification for the expected
value E(Y) of the response

> i.e. selecting an appropriate set of explanatory variables
» Examining the adequacy of the other model assumptions:

homoscedasticity and normality of error terms, and
independence of observations

» ... and ways of improving the model if these are not satisfied



Model selection

» Suppose we start with a set of potential explanatory variables
X1, X2, ..., Xk for a response Y
» These also include any interaction (product) variables and
nonlinear transformations we want to consider

» The aim of selection of explanatory variables is to identify a
model which
» includes all the variables which need to be included
> leaves out all the variables which do not need to be included
» Here the decisions are made using significance testing:
» All the variables in the selected model should be significant (at
a stated significance level )

» None of the omitted variables should be significant (at level «)
if they were included



General principles for specification

v

Theory is our best guide

If the residuals from a model are not sigificantly different from
what might have occurred by chance, then conclude that the
model is “mis-specified” (that nothing is going on)

Tests for misspecification are OK when used judiciously

We can set aside a subset of observations to be used for
testing by making out-of-sample predictions

Some authors advocate reporting the results of other

specifications (a form of “sensitivity analysis”) although this is
done rarely, if at all in social science statistics



Common tests for misspecification

» Tests for omitted variables. This include F tests and t tests
for whether coefficients are individually or jointly zero

» RESET: Regression specification error tests. Tests whether
unknown variables have been omitted from a regression
specification

» Tests for functional form. These include tests for recursive
residuals, the rainbow test, and others (below)

» Tests for structural change. To test whether parameters
change, such as the Chow test, cumsum, and
cumsum-of-squares tests



Common tests for misspecification (continued)

» Tests for outliers. Cook outlier tests for instance, although
there are many others

» Tests for non-spherical errors. Example: Durbin-Watson test

» Tests for exogeneity. Hausman tests.

» Others (see Kennedy)



Correlations of explanatory variables

» Multiple regression models estimate partial effects of each
explanatory variable, allowing for correlations between these
variables

» However, these correlations also cause some apparent
complications in analysis and model selection:

» Estimated coefficient of a variable depends on what other
variables are in the model (as it should)

» Results of tests and confidence intervals depend on what other
variables are in the model

» Conclusions for model selection may thus depend on the order
in which variables were added to the model

» This is not the case if the explanatory variables are
uncorrelated, but that is rarely true

» Particular problems if some explanatory variables are very
strongly correlated (see notes at the end of these slides)



Sequential testing

» Such a model can be found using a series of significance tests

» Usual t or F tests of the coefficients, all using the same
significance level (e.g. 5%)

» Two basic versions are:

» Forward selection: start with a model with no explanatory
variables, and add new ones one at a time, until none of the
omitted ones are significant

» Backward selection: start with a model with all the variables
included, and remove nonsignificant ones, one at a time, until
the remaining ones are significant

» But always better to start with theory — what follows applies
only if you are doing truly exploratory work



Example from HIE data

> Response variable: General Health Index at entry, n = 1113

» Potential explanatory variables: sex (dummy for men), age,
log of family income, weight, blood pressure and smoking (as
two dummy variables, for current and ex smokers)

» A haphazard collection of variables with no theoretical
motivation, purely for illustration of the stepwise procedure
» For simplicity, no interactions or nonlinear effects considered
» F-tests are used for the smoking variable (with two dummies),
t-tests for the rest
» Start backwards, i.e. from a full model with all candidate
variables included



Example from HIE data

1. In the full model, Blood pressure (P = 0.97), Smoking
(P =10.29) and Sex (P = 0.18) are not significant at the 5%
level

» Remove Blood pressure
2. Now smoking is significant (p < 0.05) although Sex
(P = 0.17) still not significant
3. In this model, Sex (p = 0.21) is the only nonsignificant
variable, so remove it

4. If added to this model, Blood pressure is not be significant
(p = 0.90), so it can stay out



Example from HIE data

» So the final model includes Age, Log-income and Weight, all
of which are significant at the 5% level

» Here the nonsignificant variables were clear and unchanging
throughout, but this is definitely not always the case

» Example was smoking variable in this case



Comments and caveats on stepwise model selection

» Often some variables are central to the research hypothesis,
and treated differently from other control variables
> e.g. in the Health Insurance Experiment, the insurance plan
was the variable of main interest
» Such variables are not dropped during a stepwise search, but
tested separately at the end
> Variables are added or removed one at a time, not several at
once
» For categorical variables with more than two categories, this
means adding or dropping all the corresponding dummy

variables at once
» Individual dummy variables (i.e. differences between particular

categories) may be tested separately (e.g. at the end)



Comments and caveats on stepwise model selection

» The models should always be hierarchical:
» if an interaction (e.g. coefficient of X;.X) is significant, main
effects (X and X3;) may not be dropped
» if coefficient of X? is significant, X may not be dropped
> In practice, the possible interactions and nonlinear terms are
often not all considered in model selection
» Not guaranteed to find a single “best” model, because it may
not exist: there may be several models satisfying the
conditions stated earlier
» Theoretically motivated models are always better, when
theory is available



Example from Computer class 4

Only P-values shown:

Response variable: Measure of fear of crime
Variable

Age 0.462 0.012
Female < 0.001 < 0.001
Age x Female 0.358 < 0.001
Age® 0.097 < 0.001
Age?x Female 0.225 —




Diagnostics from sample residuals

> Another key tool of assessment of linear models are the
sample residuals
e=Y =Y

for all observations i = 1,..., n in the sample, where Y; are
the fitted values

» “Estimates” of the error terms (model residuals) ¢;
» We will actually use “studentised” residuals:
e; standardised to have standard deviation of 1

» Can be used for diagnostics: examination of the assumptions
of the model

» Here, in particular, examination of the assumption of
homoscedasticity that the residual standard deviation o
(conditional standard deviation of Y) is the same at all values
of the Xs



Residual plots

» Homoscedasticity may be examined using a plot of
> residuals e; (on the Y-axis) against fitted values Y; (on the
X-axis)

» This plot should show roughly equal level of variation of the
residuals for all values of Y;

» A plot with a funnel shape (variability of residuals increasing
or decreasing as Y; increase) indicates heteroscedasticity (i.e.
failure of homoscedasticity)



Example from HIE data

» Response variable: respondent’s annual expenses on
outpatient medical services
» Here consider only those with non-zero expenses
(c.f. Computer class 9 for the rest of the story)
» Explanatory variables: Age, GHI, log of family income and
dummy for free health care
» The residual plot shows clear evidence of heteroscedasticity

» Funnel opening to the right: variability of residuals is larger
when fitted values are large

» Essentially a consequence of the skewness of the distribution of
the response variable



Histogram of expenses
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Residual plot: model for expenses

Studentised residual

Fitted value



How to remove heteroscedasticity

v

The only way discussed today: fit the model using some
transformation of of Y as the response variable

v

Today, consider only log(Y)

» Often works well when the response variable has a skewed
distribution

In the example, use log of expenses as the response

v

» Residual plot now shows no heteroscedasticity

v

Other ways of dealing with heteroscedastic residuals (not
discussed here):

» Other transformations of the response

» Using “robust” standard errors which are valid even there is
heteroscedasticity

» Fitting a more flexible model for the variance of Y



Histogram of log-expenses
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Residual plot: model for log-expenses

™ -

Stud. resid.

T T T T
4.0 4.5 5.0 5.5

Fitted value



Interpreting coefficients on log(X), level Y

» 3 is the absolute change in Y when X is multiplied by e
(2.718)

» You can work out the expected change in Y for a p% increase
in X by multiplying 3 by log([100+p]/100)

» To work out the expected change associated with a 10%
increase in the independent variable, therefore, multiply by
log(110/100) = log(1.1) = 0.09531

> Alternatively, % can be interpreted as the increase in Y from
a 1% increase in X



Interpreting coefficients on log(X), level Y

Consider the regression of % urban population (1995) on per
capita GNP:
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Interpreting coefficients on log(X), level Y

To control the skew and counter problems in heteroskedasticity, we
log GNP /cap:
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Interpreting coefficients

. regress urb95 1PcGDP95

on log(X), level Y

Source | ss df MS Number of obs = 132
+ F( 1, 130) = 158.73
Model ‘ 38856.2103 1 38856.2103 Prob > F = 0.0000
Residual ‘ 31822.7215 130 244.790165 R-squared = 0.5498
+ Adj R-squared = 0.5463
Total | 70678.9318 131 539.533831 Root MSE = 15.646
urb9s | Coef. Std. Err. t P>|t| [95% Conf. Interval]

+
1PcGDPY5 | 10.43004 .8278521 12.599 0.000 8.792235 12.06785
_cons | -24.42095 6.295892 -3.879 0.000 -36.87662 -11.96528

» Multiplying GNP /cap by e (2.718) will increase Y by 10.43
» A 1% increase in GNP /cap will increase Y by

10.43/100=.1043

» A 10% increase in GNP /cap will increase Y by

10.43*.09531=0.994



Interpreting coefficients on log(X) with log(Y)

» Multiplying X by e will increase Y by ebeta

> You can work out the expected proportional change in Y for a
p% increase in X by computing e/o&([100+p]/100)5

> The predicted proportional change can be converted to a
predicted % change by subtracting 1 and multiplying by 100



Interpreting coefficients on log(X) with log(Y)

Example: infant mortality Y on GNP /cap as X

— o
5.1299 . o o
© 00® S0 O
o 8 o0 ° o o
o ° o °
o (e}
o % o°® o o
o © & o
= o 00°0 0
° oo o% o o
o o ©
o o o
® 5 08 o °
) o Poooy
o ° P o °
14 o e}
. ® °
E o © o ° ° ° %o
o5.°
o o o oo o o o o o
o °° o o o
a o o
o o o
o 00 o
o
— (e} ) o
o o o [ele) o
@ o
O @O0 00 OO O
o 00 O
amd O O
1.38629 | °
T T T
3.58352 10.6553

IPcGDP95



Interpreting coefficients on log(X) with log(Y)

. regress 1IMR 1PcGDP95

Source | Ss df MS Number of obs = 194
+ F( 1, 192) = 404.52
Model | 131.035233 1 131.035233 Prob > F = 0.0000
Residual | 62.1945021 192 .323929698 R-squared = 0.6781
+ Adj R-squared = 0.6765
Total | 193.229735 193 1.00119034 Root MSE = .56915
1IMR | Coef. std. Err. t P>|t| [95% Conf. Interval]

+
1PcGDP95 | -.4984531  .0247831 -20.113  0.000 -.5473352 -.449571
_cons | 7.088676 .1908519 37.142 0.000 6.71224 7.465111

» Multiplying X (GNP /cap) by e multiplies Y by e~#984531

» A 10% increase in GNP /cap multiplies IMR
e—-4984531xlog(1.1) _ 954

» So a 10% increase in GNP /cap reduces IMR by 4.6%



Interpreting coefficients on level X, log(Y)

» Each 1 unit increase in X multiplies X by ef

» Means that very approximately, BA is the percentage increase
in Y from a one-unit increase in X



Interpreting coefficients on level X, log(Y)
What if we reverse the X and Y and log urbanization as the

log(X)?
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Interpreting coefficients on level X, log(Y)

. regress 1PcGDP95 urb95

Source | ss df MS Number of obs = 132

+ F( 1, 130) = 158.73

Model | 196.362646 1 196.362646 Prob > F = 0.0000

Residual | 160.818406 130 1.23706466 R-squared = 0.5498

+ Adj R-squared = 0.5463

Total ‘ 357.181052 131 2.72657291 Root MSE = 1.1122

1PcGDP95 | Coef. std. Err. t P>|t| [95% Conf. Interval]
+

urb9s | .052709 .0041836 12.599 0.000 .0444322 .0609857

_cons | 4.630287 .2420303 19.131 0.000 4.151459 5.109115

» Each one unit increase in urbanization now increases GNP /cap
by a multiple of €%:052709 — 1,054 — or a 5.4% increase



Other uses of the residuals

> Residuals can also be plotted against individual explanatory
variables

> ones already included in the model: looking for evidence of
nonlinear effects

» ones not in the model: looking for evidence of linear or
nonlinear effects

» both are easier with significance tests

» Examining the adequacy of the assumption of normality:
normal probability plots

» If the error terms are clearly non-normal, a transformation of
the response variable often helps

» But nonnormality does not matter much, especially in large
samples

» Detection of outliers: Individual observations with extreme
values of Y (relative to their predicted value)



Assumption of independence

» The remaining model assumption is that the observations Y;
are statistically independent

» For some data structures (e.g. clustered or longitudinal data)
it is clear that they are not
» Solution: extend the model to allow for the dependence
» For that, take St416 (Models for multilevel and longitudinal
data) in LT
» This also provides ways of testing whether the dependence
need to be taken into account in the first place



Multicollinearity of explanatory variables

» Multicollinearity occurs when some explanatory variables are
exactly or nearly linearly related
> i.e. the R? for any one of them given the others is high
» for two variables, this is the same as high correlation between
them
» When there is perfect multicollinearity, some coefficients
cannot be estimated at all
» e.g. if we try to include height in both cm and inches in the
same model



Multicollinearity of explanatory variables

» When there is approximate multicollinearity, estimates of some
coefficients will be unstable

> e.g. in example below, respondent’s income 1 and 2 years
before are both included in the model, with a correlation
r =0.887

> In effect, the model has difficulty assigning separate effects to
them

» What to do about (approximate) multicollinearity?
» Drop one of the variables causing it, or
» Transform the variables so that they are less dependent: e.g.

average and difference of the two incomes below, instead of
the incomes themselves



Multicollinearity of explanatory variables

Response variable: General Health Index

Model
Variable (1) (2) 3) (4) (5)
Income 1 year before 0.274 — 0.170 — —
[0.067] [0.146]
Income 2 years before — 0.254 0.111 — —
[0.064] [0.138]
Average of incomes — — — 0.281 0.279
1 and 2 years before [0.068] [0.068]
Difference of incomes — — — 0.029 —
1 and 2 years before [0.138]
R? 0.013 0.012 0.013 0.013 0.013

(standard errors in brackets)



Diagnosing problems in residuals (regress
postestimation

» A very easy set of diagnostic plots can be accessed following a
regression, using regression post-estimation commands

» This produces, in order:

1.

ook~ wN

residuals against fitted values

Normal Q-Q plot

scale-location plot of \/@ against fitted values
Cook’s distances versus row labels

residuals against leverages

Cook's distances against leverage/(1-leverage)



Residuals v. fitted plots

Residuals vs Fitted
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rvfplot (Stata)
> plot(lm(voteslst~spend_total*incumb, data=dail), which=1) (R)

If constant variance assumption holds, then residuals would not show a
pattern against fitted values — this pattern suggests a transformation is
needed



Residuals v. fitted plots: log(spending)

Residuals vs Fitted
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plot(lm(voteslst™log(spend_total)*incumb, data=dail), which=1)



Residuals v. fitted plots: log(votes)

Residuals vs Fitted
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plot(Im(log(voteslst) “spend_total*incumb, data=dail), which=1)



Residuals v. fitted plots: log(votes) and log(spending)

Residuals vs Fitted

Residuals

4040

Fitted values
plot(lm(log(voteslist) “log(spend total)*incumb, data=dail),
which=1)



Normal Q-Q plot

Normal Q-Q

Standardized residuals

Theoretical Quantiles
regress voteslst c.spend total##incumb (Stata)
predict e, residuals
qnorm e

plot (Im(voteslst~spend total*incumb, data=dail), which=2) (R)



Normal Q-Q plot: logged(votes)

Normal Q-Q

Standardized residuals

T T T T T T T
-3 -2 -1 0 1 2 3
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plot(Im(log(voteslst) “spend_total*incumb, data=dail), which=2)



Examine the outliers!

> We can examine the points with row labels 264, 269, 404

» Note: these are not the row numbers any longer, since we
removed some with missing values

> Let's see what is strange about these cases:

> daill[c("264","269","404"), c("district", "wholename", "party",

"voteslst", "incumb", "spend_total")]

district wholename party voteslst incumb spend_total
264 Cavan Monaghan Vincent Martin  ind 1943 0 34542.73
269 Cavan Monaghan Gerry McCaughey pd 1131 0 30573.12

404 Limerick East Aidan Ryan  ind 19 0 10890.19



Scale-Location plot
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> Looks at the square root of the absolute (standardized) residuals
instead of just residuals, since \/|e| is less skewed

» Note the use of standardized or studentized residuals

predict estud, rstudent (Stata)

predict yhat
gen rstscale

sqrt (abs(estud))

graph twoway (scatter estud yhat)

plot (Im(voteslst~spend_total*incumb, data=dail), which=3) (R)



