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Quadratic β1X + β2X
2 v. β log(X )

I Quadratic allows change in relationship (parabolas), whereas
logarithmic transformation is monotone

I Log transformations are for capturing multiplicative effects of
increases

I May be very similar in some contexts



Model selection and evaluation

I Using a fitted regression model, we can
I Interpret the implications of the model using estimated

regression coefficients, their confidence intervals and fitted
values

I Use the model to predict future values of the response

I However, both of these are likely to be misleading if the model
is not (approximately) correct, i.e. if it is misspecified

I Need to have tools for evaluating and comparing models, in
order to identify correctly specified ones



Tasks of model evaluation

I Finding a model with correct specification for the expected
value E(Y ) of the response

I i.e. selecting an appropriate set of explanatory variables

I Examining the adequacy of the other model assumptions:
homoscedasticity and normality of error terms, and
independence of observations

I ... and ways of improving the model if these are not satisfied



Model selection

I Suppose we start with a set of potential explanatory variables
X1,X2, . . . ,XK for a response Y

I These also include any interaction (product) variables and
nonlinear transformations we want to consider

I The aim of selection of explanatory variables is to identify a
model which

I includes all the variables which need to be included
I leaves out all the variables which do not need to be included

I Here the decisions are made using significance testing:
I All the variables in the selected model should be significant (at

a stated significance level α)
I None of the omitted variables should be significant (at level α)

if they were included



General principles for specification

I Theory is our best guide

I If the residuals from a model are not sigificantly different from
what might have occurred by chance, then conclude that the
model is “mis-specified” (that nothing is going on)

I Tests for misspecification are OK when used judiciously

I We can set aside a subset of observations to be used for
testing by making out-of-sample predictions

I Some authors advocate reporting the results of other
specifications (a form of “sensitivity analysis”) although this is
done rarely, if at all in social science statistics



Common tests for misspecification

I Tests for omitted variables. This include F tests and t tests
for whether coefficients are individually or jointly zero

I RESET: Regression specification error tests. Tests whether
unknown variables have been omitted from a regression
specification

I Tests for functional form. These include tests for recursive
residuals, the rainbow test, and others (below)

I Tests for structural change. To test whether parameters
change, such as the Chow test, cumsum, and
cumsum-of-squares tests



Common tests for misspecification (continued)

I Tests for outliers. Cook outlier tests for instance, although
there are many others

I Tests for non-spherical errors. Example: Durbin-Watson test

I Tests for exogeneity. Hausman tests.

I Others (see Kennedy)



Correlations of explanatory variables

I Multiple regression models estimate partial effects of each
explanatory variable, allowing for correlations between these
variables

I However, these correlations also cause some apparent
complications in analysis and model selection:

I Estimated coefficient of a variable depends on what other
variables are in the model (as it should)

I Results of tests and confidence intervals depend on what other
variables are in the model

I Conclusions for model selection may thus depend on the order
in which variables were added to the model

I This is not the case if the explanatory variables are
uncorrelated, but that is rarely true

I Particular problems if some explanatory variables are very
strongly correlated (see notes at the end of these slides)



Sequential testing

I Such a model can be found using a series of significance tests
I Usual t or F tests of the coefficients, all using the same

significance level (e.g. 5%)

I Two basic versions are:
I Forward selection: start with a model with no explanatory

variables, and add new ones one at a time, until none of the
omitted ones are significant

I Backward selection: start with a model with all the variables
included, and remove nonsignificant ones, one at a time, until
the remaining ones are significant

I But always better to start with theory – what follows applies
only if you are doing truly exploratory work



Example from HIE data

I Response variable: General Health Index at entry, n = 1113
I Potential explanatory variables: sex (dummy for men), age,

log of family income, weight, blood pressure and smoking (as
two dummy variables, for current and ex smokers)

I A haphazard collection of variables with no theoretical
motivation, purely for illustration of the stepwise procedure

I For simplicity, no interactions or nonlinear effects considered

I F -tests are used for the smoking variable (with two dummies),
t-tests for the rest

I Start backwards, i.e. from a full model with all candidate
variables included



Example from HIE data

1. In the full model, Blood pressure (P = 0.97), Smoking
(P = 0.29) and Sex (P = 0.18) are not significant at the 5%
level

I Remove Blood pressure

2. Now smoking is significant (p < 0.05) although Sex
(P = 0.17) still not significant

3. In this model, Sex (p = 0.21) is the only nonsignificant
variable, so remove it

4. If added to this model, Blood pressure is not be significant
(p = 0.90), so it can stay out



Example from HIE data

I So the final model includes Age, Log-income and Weight, all
of which are significant at the 5% level

I Here the nonsignificant variables were clear and unchanging
throughout, but this is definitely not always the case

I Example was smoking variable in this case



Comments and caveats on stepwise model selection

I Often some variables are central to the research hypothesis,
and treated differently from other control variables

I e.g. in the Health Insurance Experiment, the insurance plan
was the variable of main interest

I Such variables are not dropped during a stepwise search, but
tested separately at the end

I Variables are added or removed one at a time, not several at
once

I For categorical variables with more than two categories, this
means adding or dropping all the corresponding dummy
variables at once

I Individual dummy variables (i.e. differences between particular
categories) may be tested separately (e.g. at the end)



Comments and caveats on stepwise model selection

I The models should always be hierarchical:
I if an interaction (e.g. coefficient of X1X2) is significant, main

effects (X1 and X2) may not be dropped
I if coefficient of X 2 is significant, X may not be dropped

I In practice, the possible interactions and nonlinear terms are
often not all considered in model selection

I Not guaranteed to find a single “best” model, because it may
not exist: there may be several models satisfying the
conditions stated earlier

I Theoretically motivated models are always better, when
theory is available



Example from Computer class 4

Only P-values shown:

Response variable: Measure of fear of crime

Variable

Age 0.462 0.012
Female < 0.001 < 0.001
Age × Female 0.358 < 0.001
Age2 0.097 < 0.001
Age2× Female 0.225 —



Diagnostics from sample residuals

I Another key tool of assessment of linear models are the
sample residuals

ei = Yi − Ŷi

for all observations i = 1, . . . , n in the sample, where Ŷi are
the fitted values

I “Estimates” of the error terms (model residuals) εi
I We will actually use “studentised” residuals:

ei standardised to have standard deviation of 1

I Can be used for diagnostics: examination of the assumptions
of the model

I Here, in particular, examination of the assumption of
homoscedasticity that the residual standard deviation σ
(conditional standard deviation of Y ) is the same at all values
of the X s



Residual plots

I Homoscedasticity may be examined using a plot of
I residuals ei (on the Y -axis) against fitted values Ŷi (on the

X -axis)

I This plot should show roughly equal level of variation of the
residuals for all values of Ŷi

I A plot with a funnel shape (variability of residuals increasing
or decreasing as Ŷi increase) indicates heteroscedasticity (i.e.
failure of homoscedasticity)



Example from HIE data

I Response variable: respondent’s annual expenses on
outpatient medical services

I Here consider only those with non-zero expenses
(c.f. Computer class 9 for the rest of the story)

I Explanatory variables: Age, GHI, log of family income and
dummy for free health care

I The residual plot shows clear evidence of heteroscedasticity
I Funnel opening to the right: variability of residuals is larger

when fitted values are large
I Essentially a consequence of the skewness of the distribution of

the response variable



Histogram of expenses
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Residual plot: model for expenses
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How to remove heteroscedasticity

I The only way discussed today: fit the model using some
transformation of of Y as the response variable

I Today, consider only log(Y )
I Often works well when the response variable has a skewed

distribution

I In the example, use log of expenses as the response
I Residual plot now shows no heteroscedasticity

I Other ways of dealing with heteroscedastic residuals (not
discussed here):

I Other transformations of the response
I Using “robust” standard errors which are valid even there is

heteroscedasticity
I Fitting a more flexible model for the variance of Y



Histogram of log-expenses
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Residual plot: model for log-expenses
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Interpreting coefficients on log(X ), level Y

I β̂ is the absolute change in Y when X is multiplied by e
(2.718)

I You can work out the expected change in Y for a p% increase
in X by multiplying β̂ by log([100+p]/100)

I To work out the expected change associated with a 10%
increase in the independent variable, therefore, multiply by
log(110/100) = log(1.1) = 0.09531

I Alternatively, β
100 can be interpreted as the increase in Y from

a 1% increase in X



Interpreting coefficients on log(X ), level Y

Consider the regression of % urban population (1995) on per
capita GNP:
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Some examples

! Let's consider the relationship between the percentage
urban and per capita GNP:

! This doesn't look too good.  Let's try transforming the per
capita GNP by logging it:



Interpreting coefficients on log(X ), level Y
To control the skew and counter problems in heteroskedasticity, we
log GNP/cap:
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Some examples

! Let's consider the relationship between the percentage
urban and per capita GNP:

! This doesn't look too good.  Let's try transforming the per
capita GNP by logging it:



Interpreting coefficients on log(X ), level Y! That looked pretty good.  Now let's quantify the association
between percentage urban and the logged per capita
income:

. regress urb95 lPcGDP95                                                       
  Source |       SS       df       MS                  Number of obs =     132 
---------+------------------------------               F(  1,   130) =  158.73 
   Model |  38856.2103     1  38856.2103               Prob > F      =  0.0000 
Residual |  31822.7215   130  244.790165               R-squared     =  0.5498 
---------+------------------------------               Adj R-squared =  0.5463 
   Total |  70678.9318   131  539.533831               Root MSE      =  15.646 
------------------------------------------------------------------------------ 
   urb95 |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
lPcGDP95 |   10.43004   .8278521     12.599   0.000       8.792235    12.06785 
   _cons |  -24.42095   6.295892     -3.879   0.000      -36.87662   -11.96528 
------------------------------------------------------------------------------ 

! The implication of this coefficient is that multiplying 
capita income by e, roughly 2.71828, 'increases' the
percentage urban by 10.43 percentage points.

! Increasing per capita income by 10% 'increases' the
percentage urban by 10.43*0.09531 = 0.994 percentage
points.

I Multiplying GNP/cap by e (2.718) will increase Y by 10.43

I A 1% increase in GNP/cap will increase Y by
10.43/100=.1043

I A 10% increase in GNP/cap will increase Y by
10.43*.09531=0.994



Interpreting coefficients on log(X ) with log(Y )

I Multiplying X by e will increase Y by e
ˆbeta

I You can work out the expected proportional change in Y for a

p% increase in X by computing e log([100+p]/100)β̂

I The predicted proportional change can be converted to a
predicted % change by subtracting 1 and multiplying by 100



Interpreting coefficients on log(X ) with log(Y )

Example: infant mortality Y on GNP/cap as X
lIM
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Logged independent and dependent variables

! Let's look at infant mortality and per capita income:

. regress lIMR lPcGDP95                                                        
  Source |       SS       df       MS                  Number of obs =     194 
---------+------------------------------               F(  1,   192) =  404.52 
   Model |  131.035233     1  131.035233               Prob > F      =  0.0000 
Residual |  62.1945021   192  .323929698               R-squared     =  0.6781 
---------+------------------------------               Adj R-squared =  0.6765 
   Total |  193.229735   193  1.00119034               Root MSE      =  .56915 
------------------------------------------------------------------------------ 
    lIMR |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
lPcGDP95 |  -.4984531   .0247831    -20.113   0.000      -.5473352    -.449571 
   _cons |   7.088676   .1908519     37.142   0.000        6.71224    7.465111 
------------------------------------------------------------------------------ 

                                                            
! Thus multiplying per capita income by 2.718 multiplies the

infant mortality rate by e  = 0.607-0.4984531

! A 10% increase in per capita income multiplies the infant
mortality rate e  = 0.954.-0.4984531*ln(1.1)

! In other words, a 10% increase in per capita income
reduces the infant mortality rate by 4.6%.



Interpreting coefficients on log(X ) with log(Y )
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Logged independent and dependent variables

! Let's look at infant mortality and per capita income:

. regress lIMR lPcGDP95                                                        
  Source |       SS       df       MS                  Number of obs =     194 
---------+------------------------------               F(  1,   192) =  404.52 
   Model |  131.035233     1  131.035233               Prob > F      =  0.0000 
Residual |  62.1945021   192  .323929698               R-squared     =  0.6781 
---------+------------------------------               Adj R-squared =  0.6765 
   Total |  193.229735   193  1.00119034               Root MSE      =  .56915 
------------------------------------------------------------------------------ 
    lIMR |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
lPcGDP95 |  -.4984531   .0247831    -20.113   0.000      -.5473352    -.449571 
   _cons |   7.088676   .1908519     37.142   0.000        6.71224    7.465111 
------------------------------------------------------------------------------ 

                                                            
! Thus multiplying per capita income by 2.718 multiplies the

infant mortality rate by e  = 0.607-0.4984531

! A 10% increase in per capita income multiplies the infant
mortality rate e  = 0.954.-0.4984531*ln(1.1)

! In other words, a 10% increase in per capita income
reduces the infant mortality rate by 4.6%.

I Multiplying X (GNP/cap) by e multiplies Y by e−.4984531

I A 10% increase in GNP/cap multiplies IMR
e−.4984531∗log(1.1) = .954

I So a 10% increase in GNP/cap reduces IMR by 4.6%



Interpreting coefficients on level X , log(Y )

I Each 1 unit increase in X multiplies X by e β̂

I Means that very approximately, β̂ is the percentage increase
in Y from a one-unit increase in X



Interpreting coefficients on level X , log(Y )
What if we reverse the X and Y and log urbanization as the
log(X )?
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What about the situation where the dependent variable is
logged?

! We could just as easily have considered the 'effect' on
logged per capita income of increasing urbanization:

                                                                               
. regress lPcGDP95 urb95
  Source |       SS       df       MS                  Number of obs =     132 
---------+------------------------------               F(  1,   130) =  158.73 
   Model |  196.362646     1  196.362646               Prob > F      =  0.0000 
Residual |  160.818406   130  1.23706466               R-squared     =  0.5498 
---------+------------------------------               Adj R-squared =  0.5463 
   Total |  357.181052   131  2.72657291               Root MSE      =  1.1122 
------------------------------------------------------------------------------ 
lPcGDP95 |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
   urb95 |    .052709   .0041836     12.599   0.000       .0444322    .0609857 
   _cons |   4.630287   .2420303     19.131   0.000       4.151459    5.109115 
------------------------------------------------------------------------------ 

! Every one point increase in the percentage urban multiplies
per capita income by e  = 1.054.  In other words, it0.052709

increases per capita income by 5.4%.
                             
       



Interpreting coefficients on level X , log(Y )
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What about the situation where the dependent variable is
logged?

! We could just as easily have considered the 'effect' on
logged per capita income of increasing urbanization:

                                                                               
. regress lPcGDP95 urb95
  Source |       SS       df       MS                  Number of obs =     132 
---------+------------------------------               F(  1,   130) =  158.73 
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Residual |  160.818406   130  1.23706466               R-squared     =  0.5498 
---------+------------------------------               Adj R-squared =  0.5463 
   Total |  357.181052   131  2.72657291               Root MSE      =  1.1122 
------------------------------------------------------------------------------ 
lPcGDP95 |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
   urb95 |    .052709   .0041836     12.599   0.000       .0444322    .0609857 
   _cons |   4.630287   .2420303     19.131   0.000       4.151459    5.109115 
------------------------------------------------------------------------------ 

! Every one point increase in the percentage urban multiplies
per capita income by e  = 1.054.  In other words, it0.052709

increases per capita income by 5.4%.
                             
       

I Each one unit increase in urbanization now increases GNP/cap
by a multiple of e0.052709 = 1.054 – or a 5.4% increase



Other uses of the residuals

I Residuals can also be plotted against individual explanatory
variables

I ones already included in the model: looking for evidence of
nonlinear effects

I ones not in the model: looking for evidence of linear or
nonlinear effects

I both are easier with significance tests

I Examining the adequacy of the assumption of normality:
normal probability plots

I If the error terms are clearly non-normal, a transformation of
the response variable often helps

I But nonnormality does not matter much, especially in large
samples

I Detection of outliers: Individual observations with extreme
values of Y (relative to their predicted value)



Assumption of independence

I The remaining model assumption is that the observations Yi

are statistically independent

I For some data structures (e.g. clustered or longitudinal data)
it is clear that they are not

I Solution: extend the model to allow for the dependence
I For that, take St416 (Models for multilevel and longitudinal

data) in LT
I This also provides ways of testing whether the dependence

need to be taken into account in the first place



Multicollinearity of explanatory variables

I Multicollinearity occurs when some explanatory variables are
exactly or nearly linearly related

I i.e. the R2 for any one of them given the others is high
I for two variables, this is the same as high correlation between

them

I When there is perfect multicollinearity, some coefficients
cannot be estimated at all

I e.g. if we try to include height in both cm and inches in the
same model



Multicollinearity of explanatory variables

I When there is approximate multicollinearity, estimates of some
coefficients will be unstable

I e.g. in example below, respondent’s income 1 and 2 years
before are both included in the model, with a correlation
r = 0.887

I In effect, the model has difficulty assigning separate effects to
them

I What to do about (approximate) multicollinearity?
I Drop one of the variables causing it, or
I Transform the variables so that they are less dependent: e.g.

average and difference of the two incomes below, instead of
the incomes themselves



Multicollinearity of explanatory variables

Response variable: General Health Index
Model

Variable (1) (2) (3) (4) (5)

Income 1 year before 0.274 — 0.170 — —

[0.067] [0.146]

Income 2 years before — 0.254 0.111 — —

[0.064] [0.138]

Average of incomes — — — 0.281 0.279

1 and 2 years before [0.068] [0.068]

Difference of incomes — — — 0.029 —

1 and 2 years before [0.138]

R2 0.013 0.012 0.013 0.013 0.013

(standard errors in brackets)



Diagnosing problems in residuals (regress
postestimation

I A very easy set of diagnostic plots can be accessed following a
regression, using regression post-estimation commands

I This produces, in order:

1. residuals against fitted values
2. Normal Q-Q plot
3. scale-location plot of

√
|ei | against fitted values

4. Cook’s distances versus row labels
5. residuals against leverages
6. Cook’s distances against leverage/(1-leverage)



Residuals v. fitted plots
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I rvfplot (Stata)

I plot(lm(votes1st~spend total*incumb, data=dail), which=1) (R)

I If constant variance assumption holds, then residuals would not show a
pattern against fitted values — this pattern suggests a transformation is
needed



Residuals v. fitted plots: log(spending)
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plot(lm(votes1st~log(spend total)*incumb, data=dail), which=1)



Residuals v. fitted plots: log(votes)
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plot(lm(log(votes1st)~spend total*incumb, data=dail), which=1)



Residuals v. fitted plots: log(votes) and log(spending)
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plot(lm(log(votes1st)~log(spend total)*incumb, data=dail),

which=1)



Normal Q-Q plot
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regress votes1st c.spend total##incumb (Stata)
predict e, residuals

qnorm e

plot(lm(votes1st~spend total*incumb, data=dail), which=2) (R)



Normal Q-Q plot: logged(votes)
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plot(lm(log(votes1st)~spend total*incumb, data=dail), which=2)



Examine the outliers!

I We can examine the points with row labels 264, 269, 404

I Note: these are not the row numbers any longer, since we
removed some with missing values

I Let’s see what is strange about these cases:

> dail[c("264","269","404"), c("district", "wholename", "party",

"votes1st", "incumb", "spend_total")]

district wholename party votes1st incumb spend_total

264 Cavan Monaghan Vincent Martin ind 1943 0 34542.73

269 Cavan Monaghan Gerry McCaughey pd 1131 0 30573.12

404 Limerick East Aidan Ryan ind 19 0 10890.19



Scale-Location plot
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I Looks at the square root of the absolute (standardized) residuals
instead of just residuals, since

√
|e| is less skewed

I Note the use of standardized or studentized residuals

predict estud, rstudent (Stata)
predict yhat

gen rstscale = sqrt(abs(estud))

graph twoway (scatter estud yhat)

plot(lm(votes1st~spend total*incumb, data=dail), which=3) (R)


