Problems with Predictors

ME104: Linear Regression Analysis Kenneth Benoit

August 17, 2012

Quadratic
$$\beta_1 X + \beta_2 X^2$$
 v. $\beta \log(X)$

- Quadratic allows change in relationship (parabolas), whereas logarithmic transformation is monotone
- Log transformations are for capturing multiplicative effects of increases
- May be very similar in some contexts

Model selection and evaluation

- Using a fitted regression model, we can
 - Interpret the implications of the model using estimated regression coefficients, their confidence intervals and fitted values
 - Use the model to **predict** future values of the response
- However, both of these are likely to be misleading if the model is not (approximately) correct, i.e. if it is misspecified
- Need to have tools for evaluating and comparing models, in order to identify correctly specified ones

Tasks of model evaluation

- ► Finding a model with correct specification for the expected value E(Y) of the response
 - ▶ i.e. selecting an appropriate set of explanatory variables
- Examining the adequacy of the other model assumptions: homoscedasticity and normality of error terms, and independence of observations
 - ... and ways of improving the model if these are not satisfied

Model selection

- Suppose we start with a set of potential explanatory variables X_1, X_2, \dots, X_K for a response Y
 - ► These also include any interaction (product) variables and nonlinear transformations we want to consider
- The aim of selection of explanatory variables is to identify a model which
 - includes all the variables which need to be included
 - leaves out all the variables which do not need to be included
- ▶ Here the decisions are made using significance testing:
 - All the variables in the selected model should be significant (at a stated significance level α)
 - None of the omitted variables should be significant (at level α) if they were included

General principles for specification

- Theory is our best guide
- ▶ If the residuals from a model are not sigificantly different from what might have occurred by chance, then conclude that the model is "mis-specified" (that nothing is going on)
- ▶ Tests for misspecification are OK when used judiciously
- We can set aside a subset of observations to be used for testing by making out-of-sample predictions
- Some authors advocate reporting the results of other specifications (a form of "sensitivity analysis") although this is done rarely, if at all in social science statistics

Common tests for misspecification

- ► Tests for omitted variables. This include *F* tests and *t* tests for whether coefficients are individually or jointly zero
- RESET: Regression specification error tests. Tests whether unknown variables have been omitted from a regression specification
- ► Tests for functional form. These include tests for recursive residuals, the rainbow test, and others (below)
- ➤ Tests for structural change. To test whether parameters change, such as the Chow test, cumsum, and cumsum-of-squares tests

Common tests for misspecification (continued)

- ► Tests for outliers. Cook outlier tests for instance, although there are many others
- ► Tests for non-spherical errors. Example: Durbin-Watson test
- ► Tests for exogeneity. Hausman tests.
- Others (see Kennedy)

Correlations of explanatory variables

- Multiple regression models estimate partial effects of each explanatory variable, allowing for correlations between these variables
- However, these correlations also cause some apparent complications in analysis and model selection:
 - Estimated coefficient of a variable depends on what other variables are in the model (as it should)
 - Results of tests and confidence intervals depend on what other variables are in the model
 - Conclusions for model selection may thus depend on the order in which variables were added to the model
- ► This is not the case if the explanatory variables are uncorrelated, but that is rarely true
- Particular problems if some explanatory variables are very strongly correlated (see notes at the end of these slides)

Sequential testing

- ▶ Such a model can be found using a series of significance tests
 - ▶ Usual t or F tests of the coefficients, all using the same significance level (e.g. 5%)
- Two basic versions are:
 - Forward selection: start with a model with no explanatory variables, and add new ones one at a time, until none of the omitted ones are significant
 - Backward selection: start with a model with all the variables included, and remove nonsignificant ones, one at a time, until the remaining ones are significant
- ▶ But always better to start with theory what follows applies only if you are doing truly exploratory work

- ▶ Response variable: General Health Index at entry, n = 1113
- ▶ Potential explanatory variables: sex (dummy for men), age, log of family income, weight, blood pressure and smoking (as two dummy variables, for current and ex smokers)
 - A haphazard collection of variables with no theoretical motivation, purely for illustration of the stepwise procedure
 - For simplicity, no interactions or nonlinear effects considered
- F-tests are used for the smoking variable (with two dummies),
 t-tests for the rest
- Start backwards, i.e. from a full model with all candidate variables included

- 1. In the full model, Blood pressure (P=0.97), Smoking (P=0.29) and Sex (P=0.18) are not significant at the 5% level
 - Remove Blood pressure
- 2. Now smoking is significant (p < 0.05) although Sex (P = 0.17) still not significant
- 3. In this model, Sex (p = 0.21) is the only nonsignificant variable, so remove it
- 4. If added to this model, Blood pressure is not be significant (p = 0.90), so it can stay out

- ▶ So the final model includes Age, Log-income and Weight, all of which are significant at the 5% level
- ► Here the nonsignificant variables were clear and unchanging throughout, but this is definitely not always the case
- Example was smoking variable in this case

Comments and caveats on stepwise model selection

- ► Often some variables are central to the research hypothesis, and treated differently from other control variables
 - e.g. in the Health Insurance Experiment, the insurance plan was the variable of main interest
 - Such variables are not dropped during a stepwise search, but tested separately at the end
- Variables are added or removed one at a time, not several at once
 - For categorical variables with more than two categories, this means adding or dropping all the corresponding dummy variables at once
 - ► Individual dummy variables (i.e. differences between particular categories) may be tested separately (e.g. at the end)

Comments and caveats on stepwise model selection

- The models should always be hierarchical:
 - if an interaction (e.g. coefficient of X_1X_2) is significant, main effects (X_1 and X_2) may not be dropped
 - if coefficient of X^2 is significant, X may not be dropped
- In practice, the possible interactions and nonlinear terms are often not all considered in model selection
- Not guaranteed to find a single "best" model, because it may not exist: there may be several models satisfying the conditions stated earlier
- Theoretically motivated models are always better, when theory is available

Example from Computer class 4

Only *P*-values shown:

Response variable: Measure of fear of crime		
Variable		
Age	0.462	0.012
Female	< 0.001	< 0.001
$Age \times Female$	0.358	< 0.001
Age^2	0.097	< 0.001
$Age^2 \times Female$	0.225	_

Diagnostics from sample residuals

 Another key tool of assessment of linear models are the sample residuals

$$e_i = Y_i - \hat{Y}_i$$

for all observations $i=1,\ldots,n$ in the sample, where \hat{Y}_i are the fitted values

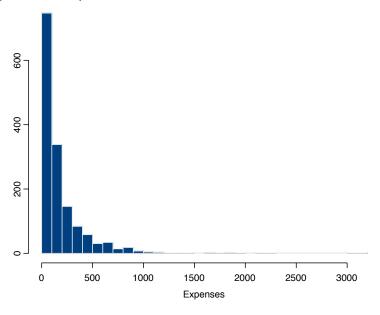
- "Estimates" of the error terms (model residuals) ϵ_i
- ▶ We will actually use "studentised" residuals: e_i standardised to have standard deviation of 1
- Can be used for diagnostics: examination of the assumptions of the model
- Here, in particular, examination of the assumption of homoscedasticity that the residual standard deviation σ (conditional standard deviation of Y) is the same at all values of the Xs

Residual plots

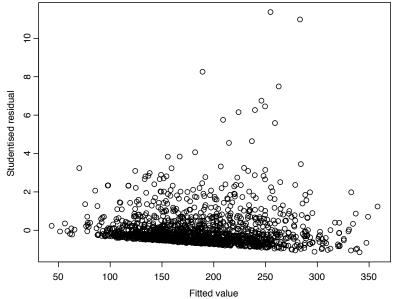
- Homoscedasticity may be examined using a plot of
 - residuals e_i (on the Y-axis) against fitted values \hat{Y}_i (on the X-axis)
- ▶ This plot should show roughly equal level of variation of the residuals for all values of \hat{Y}_i
- A plot with a funnel shape (variability of residuals increasing or decreasing as \hat{Y}_i increase) indicates heteroscedasticity (i.e. failure of homoscedasticity)

- Response variable: respondent's annual expenses on outpatient medical services
 - ► Here consider only those with non-zero expenses (c.f. Computer class 9 for the rest of the story)
- Explanatory variables: Age, GHI, log of family income and dummy for free health care
- ▶ The residual plot shows clear evidence of heteroscedasticity
 - Funnel opening to the right: variability of residuals is larger when fitted values are large
 - Essentially a consequence of the skewness of the distribution of the response variable

Histogram of expenses



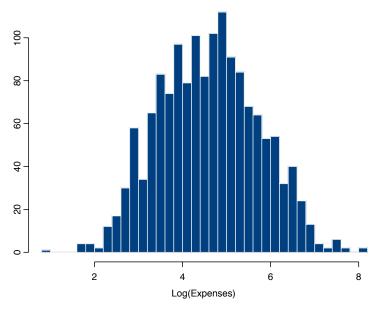
Residual plot: model for expenses



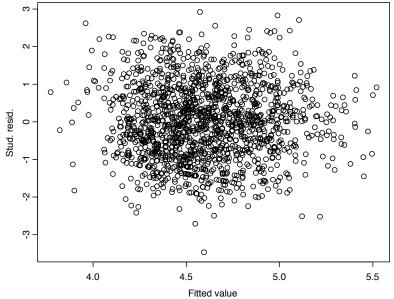
How to remove heteroscedasticity

- ► The only way discussed today: fit the model using some transformation of of *Y* as the response variable
- ▶ Today, consider only log(Y)
 - Often works well when the response variable has a skewed distribution
- ▶ In the example, use log of expenses as the response
 - Residual plot now shows no heteroscedasticity
- Other ways of dealing with heteroscedastic residuals (not discussed here):
 - Other transformations of the response
 - Using "robust" standard errors which are valid even there is heteroscedasticity
 - Fitting a more flexible model for the variance of Y

Histogram of log-expenses

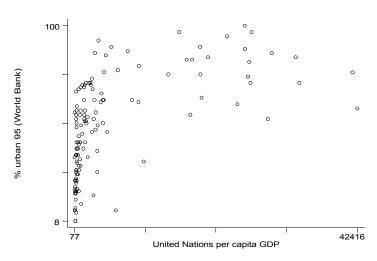


Residual plot: model for log-expenses

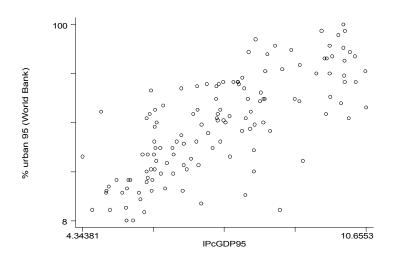


- $\hat{\beta}$ is the absolute change in Y when X is multiplied by e (2.718)
- ▶ You can work out the expected change in Y for a p% increase in X by multiplying $\hat{\beta}$ by $\log([100+p]/100)$
- ▶ To work out the expected change associated with a 10% increase in the independent variable, therefore, multiply by $\log(110/100) = \log(1.1) = 0.09531$
- Alternatively, $\frac{\beta}{100}$ can be interpreted as the increase in Y from a 1% increase in X

Consider the regression of % urban population (1995) on per capita GNP:



To control the skew and counter problems in heterosked asticity, we log $\ensuremath{\mathsf{GNP}/\mathsf{cap}}$:



```
. regress urb95 1PcGDP95
 Source
                     đf
                                              Number of obs =
                             MS
                                                            132
                                              F(1, 130) = 158.73
  Model |
        38856.2103 1 38856.2103
                                              Prob > F
                                                        = 0.0000
         31822.7215 130 244.790165
Residual |
                                              R-squared
                                                        = 0.5498
                                              Adj R-squared = 0.5463
        70678.9318 131 539.533831
                                              Root MSE
                               t P>|t| [95% Conf. Interval]
            Coef. Std. Err.
  11rh95
                              12.599 0.000 8.792235
1PcGDP95
         10.43004 .8278521
                                                          12.06785
         -24.42095 6.295892 -3.879 0.000 -36.87662
                                                          -11,96528
```

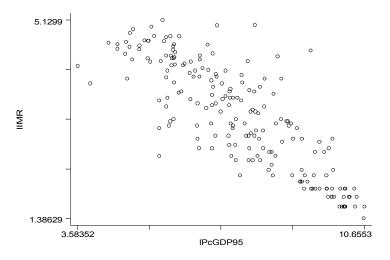
- ▶ Multiplying GNP/cap by e (2.718) will increase Y by 10.43
- ► A 1% increase in GNP/cap will increase *Y* by 10.43/100=.1043
- ► A 10% increase in GNP/cap will increase *Y* by 10.43*.09531=0.994

Interpreting coefficients on log(X) with log(Y)

- ▶ Multiplying X by e will increase Y by $e^{b\hat{e}ta}$
- ▶ You can work out the expected proportional change in Y for a p% increase in X by computing $e^{log([100+p]/100)\hat{\beta}}$
- ► The predicted proportional change can be converted to a predicted % change by subtracting 1 and multiplying by 100

Interpreting coefficients on log(X) with log(Y)

Example: infant mortality Y on GNP/cap as X



Interpreting coefficients on log(X) with log(Y)

```
. regress lIMR lPcGDP95
  Source
                           df
                                                         Number of obs =
                                                         F( 1.
                                                                           404.52
            131.035233
                        1 131.035233
   Model
                                                         Prob > F
                                                                           0.0000
            62,1945021
                         192 .323929698
                                                         R-squared
                                                                          0.6781
Residual
                                                         Adj R-squared =
                                                                           0.6765
   Total |
            193.229735
                         193 1.00119034
                                                         Root MSE
                                                                           . 56915
    limr |
                         Std. Err.
                                               P>|t|
                                                            [95% Conf. Interval]
                                     -20,113
                                               0.000
1PcGDP95
            -.4984531
                         .0247831
                                                           -.5473352
  cons
             7.088676
                         .1908519
                                      37.142
                                               0.000
                                                             6.71224
```

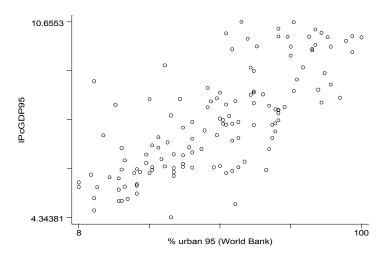
- ▶ Multiplying X (GNP/cap) by e multiplies Y by $e^{-.4984531}$
- A 10% increase in GNP/cap multiplies IMR $e^{-.4984531*\log(1.1)} = .954$
- ► So a 10% increase in GNP/cap reduces IMR by 4.6%

Interpreting coefficients on level X, log(Y)

- **Each** 1 unit increase in X multiplies X by $e^{\hat{\beta}}$
- Means that very approximately, $\hat{\beta}$ is the percentage increase in Y from a one-unit increase in X

Interpreting coefficients on level X, log(Y)

What if we reverse the X and Y and log urbanization as the log(X)?



Interpreting coefficients on level X, log(Y)

```
. regress 1PcGDP95 urb95
 Source
                          df
                                                       Number of obs =
           196.362646
                                                       Prob > F
  Model
                         1 196.362646
                                                                        0.0000
Residual
            160.818406
                                                       R-squared
                                                       Adj R-squared =
                                             P>|t|
                        Std. Err.
             .052709
                                              0.000
   urb95
                        .0041836
  cons
            4.630287
                        .2420303
                                    19.131
                                              0.000
```

▶ Each one unit increase in urbanization now increases GNP/cap by a multiple of $e^{0.052709} = 1.054$ – or a 5.4% increase

Other uses of the residuals

- Residuals can also be plotted against individual explanatory variables
 - ones already included in the model: looking for evidence of nonlinear effects
 - ones not in the model: looking for evidence of linear or nonlinear effects
 - both are easier with significance tests
- Examining the adequacy of the assumption of normality: normal probability plots
 - If the error terms are clearly non-normal, a transformation of the response variable often helps
 - But nonnormality does not matter much, especially in large samples
- Detection of outliers: Individual observations with extreme values of Y (relative to their predicted value)

Assumption of independence

- ► The remaining model assumption is that the observations *Y_i* are statistically independent
- ► For some data structures (e.g. clustered or longitudinal data) it is clear that they are not
- ► Solution: extend the model to allow for the dependence
 - For that, take St416 (Models for multilevel and longitudinal data) in LT
 - ► This also provides ways of testing whether the dependence need to be taken into account in the first place

Multicollinearity of explanatory variables

- Multicollinearity occurs when some explanatory variables are exactly or nearly linearly related
 - ightharpoonup i.e. the R^2 for any one of them given the others is high
 - for two variables, this is the same as high correlation between them
- When there is perfect multicollinearity, some coefficients cannot be estimated at all
 - e.g. if we try to include height in both cm and inches in the same model

Multicollinearity of explanatory variables

- When there is approximate multicollinearity, estimates of some coefficients will be unstable
 - e.g. in example below, respondent's income 1 and 2 years before are both included in the model, with a correlation r=0.887
 - In effect, the model has difficulty assigning separate effects to them
- What to do about (approximate) multicollinearity?
 - Drop one of the variables causing it, or
 - ► Transform the variables so that they are less dependent: e.g. average and difference of the two incomes below, instead of the incomes themselves

Multicollinearity of explanatory variables

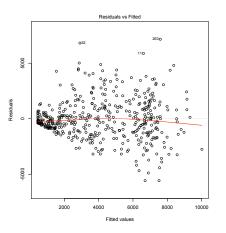
	Response variable: General Health Index				
	Model				
Variable	(1)	(2)	(3)	(4)	(5)
Income 1 year before	0.274	_	0.170	_	
	[0.067]		[0.146]		
Income 2 years before	_	0.254	0.111	_	_
		[0.064]	[0.138]		
Average of incomes	_	_	_	0.281	0.279
1 and 2 years before				[0.068]	[0.068]
Difference of incomes	_	_	_	0.029	_
1 and 2 years before				[0.138]	
R^2	0.013	0.012	0.013	0.013	0.013

(standard errors in brackets)

Diagnosing problems in residuals (regress postestimation

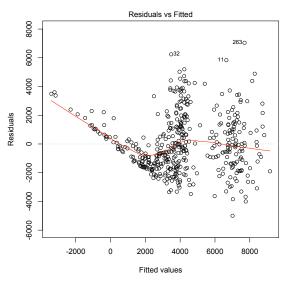
- A very easy set of diagnostic plots can be accessed following a regression, using regression post-estimation commands
- ► This produces, in order:
 - 1. residuals against fitted values
 - 2. Normal Q-Q plot
 - 3. scale-location plot of $\sqrt{|e_i|}$ against fitted values
 - 4. Cook's distances versus row labels
 - 5. residuals against leverages
 - 6. Cook's distances against leverage/(1-leverage)

Residuals v. fitted plots



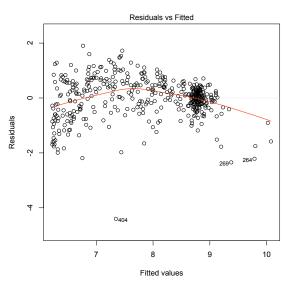
- rvfplot (Stata)
- ▶ plot(lm(votes1st~spend_total*incumb, data=dail), which=1) (R)
- If constant variance assumption holds, then residuals would not show a pattern against fitted values — this pattern suggests a transformation is needed

Residuals v. fitted plots: log(spending)



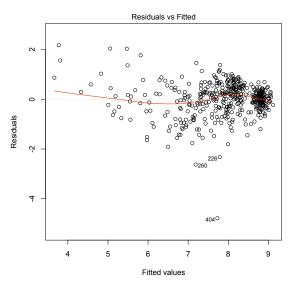
plot(lm(votes1st~log(spend_total)*incumb, data=dail), which=1)

Residuals v. fitted plots: log(votes)



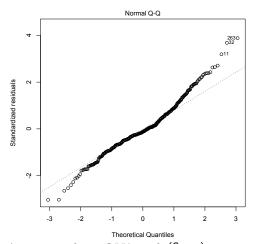
plot(lm(log(votes1st)~spend_total*incumb, data=dail), which=1)

Residuals v. fitted plots: log(votes) and log(spending)



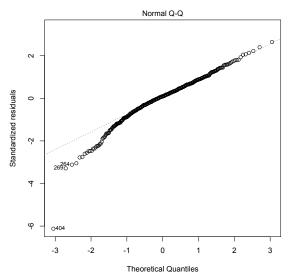
plot(lm(log(votes1st)~log(spend_total)*incumb, data=dail),
which=1)

Normal Q-Q plot



```
regress votes1st c.spend_total##incumb (Stata)
predict e, residuals
qnorm e
plot(lm(votes1st~spend_total*incumb, data=dail), which=2) (R)
```

Normal Q-Q plot: logged(votes)



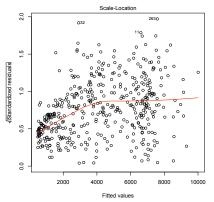
plot(lm(log(votes1st)~spend_total*incumb, data=dail), which=2)

Examine the outliers!

- ▶ We can examine the points with row labels 264, 269, 404
- ▶ Note: these are not the row numbers any longer, since we removed some with missing values
- Let's see what is strange about these cases:

```
district wholename party votes1st incumb spend_total 264 Cavan Monaghan Vincent Martin ind 1943 0 34542.73 269 Cavan Monaghan Gerry McCaughey pd 1131 0 30573.12 404 Limerick East Aidan Ryan ind 19 0 10890.19
```

Scale-Location plot



- Looks at the square root of the absolute (standardized) residuals instead of just residuals, since $\sqrt{|e|}$ is less skewed
- Note the use of standardized or studentized residuals

```
predict estud, rstudent (Stata)
predict yhat
gen rstscale = sqrt(abs(estud))
graph twoway (scatter estud yhat)
plot(lm(votes1st~spend_total*incumb, data=dail), which=3) (R)
```