CLRM Problems

ME104: Linear Regression Analysis
Kenneth Benoit

August 16, 2012

Classic illustration: the Anscombe dataset

. insheet using http://www.kenbenoit.net/courses/quant2/anscombe.csv (8 vars, 11 obs)
. list, clean

	x 1	x 2	x 3	x 4	y 1	y 2	y 3	y 4
1.	10	10	10	8	8	9.1	7.5	6.6
2.	8	8	8	8	6.9	8.1	6.8	5.8
3.	13	13	13	8	7.6	8.7	13	7.7
4.	9	9	9	8	8.8	8.8	7.1	8.8
5.	11	11	11	8	8.3	9.3	7.8	8.5
6.	14	14	14	8	10	8.1	8.8	7
7.	6	6	6	8	7.2	6.1	6.1	5.3
8.	4	4	4	19	4.3	3.1	5.4	13
9.	12	12	12	8	11	9.1	8.1	5.6
10.	7	7	7	8	4.8	7.3	6.4	7.9
11.	5	5	5	8	5.7	4.7	5.7	6.9

Classic illustration: the Anscombe dataset

. format $x 1-y 4 \% 4.2 g$
. summarize, format

Variable \|	Obs	Mean	Std. Dev.	Min	Max
x1 \|	11	9	3.3	4	14
x2 \|	11	9	3.3	4	14
x3 \|	11	9	3.3	4	14
x4 \|	11	9	3.3	8	19
y1 \|	11	7.5	2	4.3	11
y2 \|	11	7.5	2	3.1	9.3
y3 \|	11	7.5	2	5.4	13
y4 \|	11	7.5	2	5.3	13

Classic illustration: the Anscombe dataset

. regress y1 x1, cformat (\% 4.2 g)

Source	SS	df	MS
Model	27.5100011	1	27.5100011
Residual	13.7626904	9	1.52918783
Total	41.2726916	10	4.12726916

Number of obs	$=$	11
F (1,	$9)$	$=17.99$
Prob $>$ F	$=$	0.0022
R-squared	$=$	0.6665
Adj R-squared	$=$	0.6295
Root MSE	$=1.2366$	

y1 \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf	val]
x1 \|	. 5	. 12	4.24	0.002	. 23	. 77
_cons \|	3	1.1	2.67	0.026	. 46	5.5

Classic illustration: the Anscombe dataset

. regress y2 x2, cformat ($\% 4.2 \mathrm{~g}$)

Source \|	SS	df	MS
Model \|	27.5000024	1	27.5000024
Residual \|	13.776294	9	1.53069933
Total \|	41.2762964	10	4.12762964

Number of obs	$=$	11
F (1,	$9)$	$=17.97$
Prob $>$ F	$=0.0022$	
R-squared	$=0.6662$	
Adj R-squared	$=0.6292$	
Root MSE	$=1.2372$	

| y2 \| | Coef. | Std. Err. | t | P>\|t| | [95\% Conf. Interval] | |
| ---: | :--- | :---: | :---: | :---: | :---: | :---: |
| x2 \| | .5 | .12 | 4.24 | 0.002 | .23 | .77 |
| _cons | 3 | 1.1 | 2.67 | 0.026 | .46 | 5.5 |

Classic illustration: the Anscombe dataset

. regress y3 x3, cformat ($\% 4.2 \mathrm{~g}$)

Source \|	SS	df	MS
Model \|	27.4700075	1	27.4700075
Residual \|	13.7561905	9	1.52846561
Total \|	41.2261979	10	4.12261979

Number of obs	$=$	11
F (1,	$9)$	$=17.97$
Prob $>$ F	$=0.0022$	
R-squared	$=$	0.6663
Adj R-squared	$=$	0.6292
Root MSE	$=1.2363$	

y3	Coef.	Std. Err .	t	$P>\|t\|$	[95\% Conf. Interval]	
x3	. 5	. 12	4.24	0.002	. 23	. 77
_cons	3	1.1	2.67	0.026	. 46	5.5

Classic illustration: the Anscombe dataset

. regress y4 x4, cformat (\%4.2g)

Source \|	SS	df	MS
Model \|	27.4900007	1	27.4900007
Residual \|	13.7424908	9	1.52694342
Total \|	41.2324915	10	4.12324915

Number of obs	$=$	11
F $(1$,	$9)$	$=18.00$
Prob $>$ F	$=$	0.0022
R-squared	$=$	0.6667
Adj R-squared	$=$	0.6297
Root MSE	$=$	1.2357

y4 \|	Coef.	Std. Err	t	$P>\|t\|$	[95\% Conf	val]
x4 \|	. 5	. 12	4.24	0.002	. 23	. 77
_cons \|	3	1.1	2.67	0.026	. 46	5.5

Anscombe dataset plotted

CLRM assumptions revisited

1. Specification:

- $\mathrm{E}(Y)=X \beta$ (linearity)
- No extraneous variables in X
- No omitted independent variables from X
- Parameters (β) are constant

2. $\mathrm{E}(\epsilon)=0$
3. Error terms:

- $\operatorname{Var}(\epsilon)=\sigma^{2}$, or homoskedastic errors
- $\mathrm{E}\left(r_{\epsilon_{i}, \epsilon_{j}}\right)=0$, or no auto-correlation

4. X is non-stochastic

- implies no measurement error in X
- implies no serial correlation where a lagged value of Y would be used as an independent variable
- no simultaneity or endogenous X variables

5. $\operatorname{rank}(X)=k$
6. $\epsilon \mid X \sim N\left(0, \sigma^{2}\right)$

Omitting a relevant independent variable

- In general, $\beta^{O L S}$ of included coefficients will be biased, unless the excluded variable is uncorrelated with the included independent variables
- If excluded variable is orthogonal to included variables, then $\beta^{O L S}$ unbiased but $\alpha^{O L S}$ (intercept) wil be biased unless mean of excluded variable is zero
- Variance-covariance matrix of $\beta^{O L S}$ will be smaller, meaning the MSE of $\beta^{O L S}$ can go up or down (depending on bias)
- Estimate of var-covariance matrix of $\beta^{O L S}$ is biased upward, because $\hat{\sigma^{2}}$ is biased upward, so inferences are inaccurate

Omitting a relevant variable Z : graphical intuition

- Only blue and red areas reflect information used to estimate β in Y on X, but red also reflects variation in Z
- If Z were included, only blue area would be used to estimate β
- Only yellow is used to estimate σ^{2}, except when Z excluded, and then green area is also used
- If X is orthogonal to Z, then no red area and bias disappears

Including an irrelevant independent variable

- $\beta^{O L S}$ and the estimator of its variance-covariance matrix will remain unbiased
- Generally the variance-covariance of $\beta^{O L S}$ will become larger, and therefore $\beta^{O L S}$ will be less efficient (increases MSE)
- Change in effect of $s_{b_{1}}$ of including irrelevant x_{2} :

$$
s_{b_{1}}=\frac{\hat{\sigma}}{\sqrt{\sum\left(X_{1}-\bar{X}_{1}\right)\left(1-R^{2}\right)}}
$$

so adding another variance will increase R^{2} (unless $r_{x_{1}, x_{2}}=0$)

- Keep in mind that "relevant" is a very substantive matter

Adding an irrelevant variable Z : graphical intuition

- Blue area refects variation in Y due entirely to X, so β unbiased
- Since blue area $<$ (blue+red) area, $\operatorname{var}(\hat{\beta})$ increases
- Yellow area used to estimate σ unbiased so var-cov matrix of $\hat{\beta}$ remains unbiased
- If Z is orthogonal to X then no red area and then no efficiency loss

Non-linearity

- Some non-linear forms simply cannot be used with OLS
- But others can be, if the transformation of one or more variables results in a linear function in the transformed variables
- Two types of transformations, depending on whether the whole equation or only independent variables are transformed
- Transforming only the independent variables example:

$$
\begin{aligned}
& y=\alpha+\beta_{1} x+\beta_{2} x^{2}+\epsilon \\
& y=\alpha+\beta_{1} x+\beta_{2} z+\epsilon
\end{aligned}
$$

where a new variable $z=x^{2}$ is created from squaring x

- The equation with z is linear in the parameters but not in the variables

Non-linearity

- Transformating the entire equation means applying a transformation to both sides, not just the independent variables
- Example: the Cobb-Douglas production function:

$$
\begin{aligned}
Y & =A K^{\alpha} L^{\gamma} \epsilon \\
\ln Y & =\ln A+\alpha \ln K+\gamma \ln L+\ln \epsilon \\
Y^{*} & =A^{*}+\alpha K^{*}+\gamma L^{*}+\epsilon^{*}
\end{aligned}
$$

is now linear in the transformed variables Y^{*}, K^{*} and L^{*}.

Functional forms for additional non-linear transformations

log-linear as with the Cobb-Douglas production function example
semi-log has two forms:

- $Y=\alpha+\beta \ln X$ (where β is ΔY due to $\% \Delta X$)
- $\ln Y=\alpha+\beta X$ (where β is $\% \Delta Y$ due to ΔX)
inverse or reciprocal: $Y=\alpha+\beta(1 / X)$
polynomial $Y=\alpha+\beta X+\gamma X^{2}$
logit $y=\frac{e^{\alpha+\beta X}}{1+e^{\alpha+\beta X}}$ constrains y to lie in $[0,1]$. Estimation is done by transforming y into log-odds ratio $\ln [y /(1-y)]=\alpha+\beta x$

Nonlinear functions of explanatory variables

- A linear regression model can also include explanatory variables which are actually nonlinear transformations of initial explanatory variables
- This means that their association with the response variable does not need to be described by a straight line
- A common example are polynomial regression models, in particular the quadratic model

$$
\mathrm{E}(Y)=\alpha+\beta_{1} X+\beta_{2} X^{2}
$$

- which can also include other explanatory variables, here omitted
- This can describe various kinds of nonlinear relationships (see next page)

Nonlinear functions of explanatory variables

X

Example of a quadratic model

- From HIE data, for blood pressure at exit, given initial blood pressure and
- respondent's weight: only a linear effect of weight, or
- both weight and weight ${ }^{2}$: a nonlinear (quadratic) effect of weight
- The coefficient of weight ${ }^{2}$ is significant at the 5% level ($P=0.023$), so the quadratic model is preferred
- Nonlinear effects are easiest to interpret using fitted values: see the plot below

Example of a quadratic model

Response variable: diastolic blood pressure at exit		
Variable	Effect of weight	
	Linear	Quadratic
(Constant)	27.36	18.06
Initial blood pressure	$0.520 \quad(<0.001)$	$0.518 \quad(<0.001)$
Weight	$0.174 \quad(<0.001)$	$0.435 \quad(<0.001)$
Weight ${ }^{2}$	-	-0.0017 (0.023)
	lues in parenthes	

Example of a quadratic model

(Initial blood pressure fixed at 75.)

Logarithms of explanatory variables

- Another common nonlinear transformation of explanatory variables is to use logarithms of them
- In particular, often used for variables with very skewed distributions
- Leads to linear models of the form

$$
\mathrm{E}(Y)=\alpha+\beta \log (X)
$$

(usually including other explanatory variables as well)

- The coefficient β of $\log (X)$ is interpreted in terms of proportional changes in X :
- β is the expected change in Y when X is multiplied by 2.72, i.e. increases by 172%
- 0.095β is the expected change in Y when X is multiplied by 1.1 , i.e. increases by 10%

Example from HIE data

- Response variable: diastolic blood pressure at exit
- Explanatory variables:
- Initial blood pressure, age, sex, free health care
- Log of (1+) annual family income
- The estimated coefficient of log-income is -1.298
- Thus the estimated effect of a 10%-increase in family income is a $0.095 \times 1.298=0.123$-point decrease in expected blood pressure, controlling for the other four explanatory variables

Example from HIE data

Variable	Coefficient	P-value
(Constant)	43.99	
Initial blood pressure	0.485	(<0.001)
Age	0.268	(<0.001)
Sex: male	4.097	(<0.001)
Free health care	-1.610	(0.010)
Log of family income	-1.298	(0.007)

Changing parameter values

- No real OLS solutions to this problem in the manner of previous solutions (through transformation)
- For simple "switching regimes" it is possible to divide a dataset into discrete sections, and regress using dummy variables
- A test is available for this, known as the Chow test
- For more complicated and more general models, we must use maximum-likelihood or (even better) Bayesian models
- Example:

$$
\begin{aligned}
y & =\beta_{1}+\beta_{2} x+\epsilon \\
\text { where : } \beta_{2} & =\alpha_{1}+\alpha_{2} z+\nu \\
\text { combine to get : } y & =\beta_{1}+\alpha_{1} x+\alpha_{2}(x z)+(\epsilon+x \nu)
\end{aligned}
$$

Interactions

- There is an interaction between two explanatory variables, if the effect of (either) one of them on the response variable depends on at which value the other one is controlled
- Included in the model by using products of the two explanatory variables as additional explanatory variables in the model
- Example: data for the 50 United States, average SAT score of students (Y) given school expenditure per student (X) and \% of students taking the SAT in three groups (low, middle and high)
- The $\%$-variable included as two dummy variables, say D_{M} for middle and D_{L} for low

Interactions

- A model without interactions:

$$
\mathrm{E}(Y)=\alpha+\beta_{1} D_{L}+\beta_{2} D_{M}+\beta_{3} X
$$

- Here the partial effect of expenditure is β_{3}, same for all values of the $\%$-variable
- Add now the products $\left(D_{L} X\right)$ and ($\left.D_{M} X\right)$, to get the model

$$
\mathrm{E}(Y)=\alpha+\beta_{1} D_{L}+\beta_{2} D_{M}+\beta_{3} X+\beta_{4}\left(D_{L} X\right)+\beta_{5}\left(D_{M} X\right)
$$

- This model states that there is an interaction between school expenditure and the $\%$-variable
- Why?

Interactions

- Consider the effect of X at different values of the dummy variables:

$$
\begin{aligned}
& \mathrm{E}(Y) \\
& =\alpha+\beta_{1} D_{L}+\beta_{2} D_{M}+\beta_{3} X+\beta_{4}\left(D_{L} X\right)+\beta_{5}\left(D_{M} X\right) \\
& =\alpha+\beta_{3} X \quad \text { For high- } \% \text { states } \\
& =\left(\alpha+\beta_{2}\right)+\left(\beta_{3}+\beta_{5}\right) X \quad \text { For mid- } \% \text { states } \\
& =\left(\alpha+\beta_{1}\right)+\left(\beta_{3}+\beta_{4}\right) X \quad \text { For low- } \% \text { states }
\end{aligned}
$$

- In other words, the coefficient of X depends on the value at which D_{L} and D_{M} are fixed

Interactions

- The estimated coefficients in this example are

$$
\begin{array}{rlr}
\mathrm{E}(Y) & =847.9+181.3 D_{L}+137.8 D_{M}+6.3 X \\
& -3.2\left(D_{L} X\right)-11.7\left(D_{M} X\right) \\
& =847.9+6.3 X & \\
= & \text { for high-\% states } \\
& =985.7-5.4 X & \\
\text { for low- } \% \text { states } \\
& \text { for mid- } \% \text { states }
\end{array}
$$

Model with interaction

...and without

Testing for interactions

- A standard test of whether the coefficient of the product variable (or variables) is zero is a test of whether the interaction is needed in the model
- t-test or (if more than one product variable) F-test
- In the example, we use an F-test, comparing

Full model $\quad \mathrm{E}(Y)=\alpha+\beta_{1} D_{L}+\beta_{2} D_{M}+\beta_{3} X$

$$
+\beta_{4}\left(D_{L} X\right)+\beta_{5}\left(D_{M} X\right)
$$

vs. Restricted m.

$$
\mathrm{E}(Y)=\alpha+\beta_{1} D_{L}+\beta_{2} D_{M}+\beta_{3} X
$$

i.e. a test of $H_{0}: \beta_{4}=\beta_{5}=0$

- Here $F=0.61$ and $P=0.55$, so the interaction is not in fact significant

Interactions between categorical variables

- In the previous example, the interaction was between a continuous variable and a categorical variable
- In other cases too, interactions are included as products of variables
- For an example of an interaction between two continuous variables, see S. 4.6.2
- An example of interaction between two categorical (here binary) explanatory variables, from HIE data:
- Response variable: blood pressure at exit
- Two binary explanatory variables:
- Being on free health care vs. some other plan
- Income in the lowest 20% in the data vs. not
- Other control variables: initial blood pressure, age and sex

Interactions between categorical variables

Variable	Coefficient
Initial blood pressure	0.483
Age	0.260
Sex: Male	3.981
Low income (lowest 20\%)	2.662
Free health care	-1.299
Income \times Insurance plan	-1.262
(Constant)	31.83

Interactions between categorical variables

- Which coefficients involving income and insurance plan apply to different combinations of these variables:

Free care	Low income	
	No	Yes
No	0	2.662
Yes	-1.299	0.101
(not showing the other coefficients)		

where $0.101=2.662-1.299-1.262$

- In other words,
- effect of low income on blood pressure is smaller for respondents on free care than on other plans
- effect of free care on blood pressure is bigger for low-income respondents than for high-income ones
- (Again, the interaction is not actually significant $(P=0.42)$ here, so this just illustrates the general idea)

