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Classic illustration: the Anscombe dataset

. insheet using http://www.kenbenoit.net/courses/quant2/anscombe.csv

(8 vars, 11 obs)

. list, clean

x1 x2 x3 x4 y1 y2 y3 y4

1. 10 10 10 8 8 9.1 7.5 6.6

2. 8 8 8 8 6.9 8.1 6.8 5.8

3. 13 13 13 8 7.6 8.7 13 7.7

4. 9 9 9 8 8.8 8.8 7.1 8.8

5. 11 11 11 8 8.3 9.3 7.8 8.5

6. 14 14 14 8 10 8.1 8.8 7

7. 6 6 6 8 7.2 6.1 6.1 5.3

8. 4 4 4 19 4.3 3.1 5.4 13

9. 12 12 12 8 11 9.1 8.1 5.6

10. 7 7 7 8 4.8 7.3 6.4 7.9

11. 5 5 5 8 5.7 4.7 5.7 6.9



Classic illustration: the Anscombe dataset

. format x1-y4 %4.2g

. summarize, format

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

x1 | 11 9 3.3 4 14

x2 | 11 9 3.3 4 14

x3 | 11 9 3.3 4 14

x4 | 11 9 3.3 8 19

y1 | 11 7.5 2 4.3 11

-------------+--------------------------------------------------------

y2 | 11 7.5 2 3.1 9.3

y3 | 11 7.5 2 5.4 13

y4 | 11 7.5 2 5.3 13



Classic illustration: the Anscombe dataset

. regress y1 x1, cformat(%4.2g)

Source | SS df MS Number of obs = 11

-------------+------------------------------ F( 1, 9) = 17.99

Model | 27.5100011 1 27.5100011 Prob > F = 0.0022

Residual | 13.7626904 9 1.52918783 R-squared = 0.6665

-------------+------------------------------ Adj R-squared = 0.6295

Total | 41.2726916 10 4.12726916 Root MSE = 1.2366

------------------------------------------------------------------------------

y1 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

x1 | .5 .12 4.24 0.002 .23 .77

_cons | 3 1.1 2.67 0.026 .46 5.5

------------------------------------------------------------------------------



Classic illustration: the Anscombe dataset

. regress y2 x2, cformat(%4.2g)

Source | SS df MS Number of obs = 11

-------------+------------------------------ F( 1, 9) = 17.97

Model | 27.5000024 1 27.5000024 Prob > F = 0.0022

Residual | 13.776294 9 1.53069933 R-squared = 0.6662

-------------+------------------------------ Adj R-squared = 0.6292

Total | 41.2762964 10 4.12762964 Root MSE = 1.2372

------------------------------------------------------------------------------

y2 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

x2 | .5 .12 4.24 0.002 .23 .77

_cons | 3 1.1 2.67 0.026 .46 5.5

------------------------------------------------------------------------------



Classic illustration: the Anscombe dataset

. regress y3 x3, cformat(%4.2g)

Source | SS df MS Number of obs = 11

-------------+------------------------------ F( 1, 9) = 17.97

Model | 27.4700075 1 27.4700075 Prob > F = 0.0022

Residual | 13.7561905 9 1.52846561 R-squared = 0.6663

-------------+------------------------------ Adj R-squared = 0.6292

Total | 41.2261979 10 4.12261979 Root MSE = 1.2363

------------------------------------------------------------------------------

y3 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

x3 | .5 .12 4.24 0.002 .23 .77

_cons | 3 1.1 2.67 0.026 .46 5.5

------------------------------------------------------------------------------



Classic illustration: the Anscombe dataset

. regress y4 x4, cformat(%4.2g)

Source | SS df MS Number of obs = 11

-------------+------------------------------ F( 1, 9) = 18.00

Model | 27.4900007 1 27.4900007 Prob > F = 0.0022

Residual | 13.7424908 9 1.52694342 R-squared = 0.6667

-------------+------------------------------ Adj R-squared = 0.6297

Total | 41.2324915 10 4.12324915 Root MSE = 1.2357

------------------------------------------------------------------------------

y4 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

x4 | .5 .12 4.24 0.002 .23 .77

_cons | 3 1.1 2.67 0.026 .46 5.5

------------------------------------------------------------------------------



Anscombe dataset plotted
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CLRM assumptions revisited

1. Specification:
I E(Y ) = Xβ (linearity)
I No extraneous variables in X
I No omitted independent variables from X
I Parameters (β) are constant

2. E(ε) = 0

3. Error terms:
I Var(ε) = σ2, or homoskedastic errors
I E(rεi ,εj ) = 0, or no auto-correlation

4. X is non-stochastic
I implies no measurement error in X
I implies no serial correlation where a lagged value of Y would

be used as an independent variable
I no simultaneity or endogenous X variables

5. rank(X ) = k

6. ε|X ∼ N(0, σ2)



Omitting a relevant independent variable

I In general, βOLS of included coefficients will be biased, unless
the excluded variable is uncorrelated with the included
independent variables

I If excluded variable is orthogonal to included variables, then
βOLS unbiased but αOLS (intercept) wil be biased unless
mean of excluded variable is zero

I Variance-covariance matrix of βOLS will be smaller, meaning
the MSE of βOLS can go up or down (depending on bias)

I Estimate of var-covariance matrix of βOLS is biased upward,
because σ̂2 is biased upward, so inferences are inaccurate



Omitting a relevant variable Z : graphical intuition

I Only blue and red areas reflect information used to estimate β in Y
on X , but red also reflects variation in Z

I If Z were included, only blue area would be used to estimate β
I Only yellow is used to estimate σ2, except when Z excluded, and

then green area is also used
I If X is orthogonal to Z , then no red area and bias disappears



Including an irrelevant independent variable

I βOLS and the estimator of its variance-covariance matrix will
remain unbiased

I Generally the variance-covariance of βOLS will become larger,
and therefore βOLS will be less efficient (increases MSE)

I Change in effect of sb1 of including irrelevant x2:

sb1 =
σ̂√∑

(X1 − X̄1)(1− R2)

so adding another variance will increase R2 (unless rx1,x2 = 0)

I Keep in mind that “relevant” is a very substantive matter



Adding an irrelevant variable Z : graphical intuition

I Blue area refects variation in Y due entirely to X , so β unbiased

I Since blue area < (blue+red) area, var(β̂) increases

I Yellow area used to estimate σ unbiased so var-cov matrix of β̂
remains unbiased

I If Z is orthogonal to X then no red area and then no efficiency loss



Non-linearity

I Some non-linear forms simply cannot be used with OLS

I But others can be, if the transformation of one or more
variables results in a linear function in the transformed
variables

I Two types of transformations, depending on whether the
whole equation or only independent variables are transformed

I Transforming only the independent variables example:

y = α + β1x + β2x
2 + ε

y = α + β1x + β2z + ε

where a new variable z = x2 is created from squaring x

I The equation with z is linear in the parameters but not in the
variables



Non-linearity

I Transformating the entire equation means applying a
transformation to both sides, not just the independent
variables

I Example: the Cobb-Douglas production function:

Y = AKαLγε

lnY = lnA + αlnK + γlnL + lnε

Y ∗ = A∗ + αK ∗ + γL∗ + ε∗

is now linear in the transformed variables Y ∗,K ∗ and L∗.



Functional forms for additional non-linear transformations

log-linear as with the Cobb-Douglas production function
example

semi-log has two forms:

I Y = α + βlnX (where β is ∆Y due to %∆X )
I lnY = α + βX (where β is %∆Y due to ∆X )

inverse or reciprocal: Y = α + β(1/X )

polynomial Y = α + βX + γX 2

logit y = eα+βX

1+eα+βX constrains y to lie in [0, 1]. Estimation
is done by transforming y into log-odds ratio
ln[y/(1− y)] = α + βx



Nonlinear functions of explanatory variables

I A linear regression model can also include explanatory
variables which are actually nonlinear transformations of initial
explanatory variables

I This means that their association with the response variable
does not need to be described by a straight line

I A common example are polynomial regression models, in
particular the quadratic model

E(Y ) = α + β1X + β2X
2

I which can also include other explanatory variables, here
omitted

I This can describe various kinds of nonlinear relationships (see
next page)



Nonlinear functions of explanatory variables

X

Y



Example of a quadratic model

I From HIE data, for blood pressure at exit, given initial blood
pressure and

I respondent’s weight: only a linear effect of weight, or
I both weight and weight2: a nonlinear (quadratic) effect of

weight

I The coefficient of weight2 is significant at the 5% level
(P = 0.023), so the quadratic model is preferred

I Nonlinear effects are easiest to interpret using fitted values:
see the plot below



Example of a quadratic model

Response variable: diastolic blood pressure at exit

Effect of weight

Variable Linear Quadratic

(Constant) 27.36 18.06

Initial blood pressure 0.520 (< 0.001) 0.518 (< 0.001)

Weight 0.174 (< 0.001) 0.435 (< 0.001)

Weight2 — -0.0017 (0.023)

(P-values in parentheses)



Example of a quadratic model

Weight (kg)

Bl
oo

d 
pr

es
su

re

40 60 80 100 120 140

70
75

80
85

90
95

(Initial blood pressure fixed at 75.)



Logarithms of explanatory variables

I Another common nonlinear transformation of explanatory
variables is to use logarithms of them

I In particular, often used for variables with very skewed
distributions

I Leads to linear models of the form

E(Y ) = α + β log(X )

(usually including other explanatory variables as well)
I The coefficient β of log(X ) is interpreted in terms of

proportional changes in X :
I β is the expected change in Y when X is multiplied by 2.72,

i.e. increases by 172%
I 0.095β is the expected change in Y when X is multiplied by

1.1, i.e. increases by 10%



Example from HIE data

I Response variable: diastolic blood pressure at exit
I Explanatory variables:

I Initial blood pressure, age, sex, free health care
I Log of (1+) annual family income

I The estimated coefficient of log-income is -1.298
I Thus the estimated effect of a 10%-increase in family income

is a 0.095× 1.298 = 0.123-point decrease in expected blood
pressure, controlling for the other four explanatory variables



Example from HIE data

Variable Coefficient P-value

(Constant) 43.99

Initial blood pressure 0.485 (< 0.001)

Age 0.268 (< 0.001)

Sex: male 4.097 (< 0.001)

Free health care -1.610 (0.010)

Log of family income -1.298 (0.007)



Changing parameter values

I No real OLS solutions to this problem in the manner of
previous solutions (through transformation)

I For simple “switching regimes” it is possible to divide a
dataset into discrete sections, and regress using dummy
variables

I A test is available for this, known as the Chow test

I For more complicated and more general models, we must use
maximum-likelihood or (even better) Bayesian models

I Example:

y = β1 + β2x + ε

where : β2 = α1 + α2z + ν

combine to get : y = β1 + α1x + α2(xz) + (ε+ xν)



Interactions

I There is an interaction between two explanatory variables, if
the effect of (either) one of them on the response variable
depends on at which value the other one is controlled

I Included in the model by using products of the two
explanatory variables as additional explanatory variables in the
model

I Example: data for the 50 United States, average SAT score of
students (Y ) given school expenditure per student (X ) and %
of students taking the SAT in three groups (low, middle and
high)

I The %-variable included as two dummy variables, say DM for
middle and DL for low



Interactions

I A model without interactions:

E(Y ) = α + β1DL + β2DM + β3X

I Here the partial effect of expenditure is β3, same for all values
of the %-variable

I Add now the products (DLX ) and (DMX ), to get the model

E(Y ) = α + β1DL + β2DM + β3X + β4(DLX ) + β5(DMX )

I This model states that there is an interaction between school
expenditure and the %-variable

I Why?



Interactions

I Consider the effect of X at different values of the dummy
variables:

E(Y )

= α + β1DL + β2DM + β3X + β4(DLX ) + β5(DMX )

= α + β3X For high-% states

= (α + β2) + (β3 + β5)X For mid-% states

= (α + β1) + (β3 + β4)X For low-% states

I In other words, the coefficient of X depends on the value at
which DL and DM are fixed



Interactions

I The estimated coefficients in this example are

E(Y ) = 847.9 + 181.3DL + 137.8DM + 6.3X

−3.2(DLX )− 11.7(DMX )

= 847.9 + 6.3X for high-% states

= 1029.2 + 3.1X for low-% states

= 985.7− 5.4X for mid-% states



Model with interaction
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...and without
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Testing for interactions

I A standard test of whether the coefficient of the product
variable (or variables) is zero is a test of whether the
interaction is needed in the model

I t-test or (if more than one product variable) F -test

I In the example, we use an F -test, comparing

Full model E(Y ) = α + β1DL + β2DM + β3X

+β4(DLX ) + β5(DMX )

vs. Restricted m. E(Y ) = α + β1DL + β2DM + β3X

i.e. a test of H0 : β4 = β5 = 0

I Here F = 0.61 and P = 0.55, so the interaction is not in fact
significant



Interactions between categorical variables

I In the previous example, the interaction was between a
continuous variable and a categorical variable

I In other cases too, interactions are included as products of
variables

I For an example of an interaction between two continuous
variables, see S. 4.6.2

I An example of interaction between two categorical (here
binary) explanatory variables, from HIE data:

I Response variable: blood pressure at exit
I Two binary explanatory variables:

I Being on free health care vs. some other plan
I Income in the lowest 20% in the data vs. not

I Other control variables: initial blood pressure, age and sex



Interactions between categorical variables

Variable Coefficient

Initial blood pressure 0.483

Age 0.260

Sex: Male 3.981

Low income (lowest 20%) 2.662

Free health care -1.299

Income×Insurance plan -1.262

(Constant) 31.83



Interactions between categorical variables

I Which coefficients involving income and insurance plan apply
to different combinations of these variables:

Low income
Free care No Yes

No 0 2.662

Yes -1.299 0.101
(not showing the other coefficients)

where 0.101=2.662-1.299-1.262
I In other words,

I effect of low income on blood pressure is smaller for
respondents on free care than on other plans

I effect of free care on blood pressure is bigger for low-income
respondents than for high-income ones

I (Again, the interaction is not actually significant (P = 0.42)
here, so this just illustrates the general idea)


