CLRM Problems

ME104: Linear Regression Analysis Kenneth Benoit

August 16, 2012

. insheet using http://www.kenbenoit.net/courses/quant2/anscombe.csv
(8 vars, 11 obs)

. list, clean

	x1	x2	xЗ	x4	y1	y2	уЗ	y4
1.	10	10	10	8	8	9.1	7.5	6.6
2.	8	8	8	8	6.9	8.1	6.8	5.8
З.	13	13	13	8	7.6	8.7	13	7.7
4.	9	9	9	8	8.8	8.8	7.1	8.8
5.	11	11	11	8	8.3	9.3	7.8	8.5
6.	14	14	14	8	10	8.1	8.8	7
7.	6	6	6	8	7.2	6.1	6.1	5.3
8.	4	4	4	19	4.3	3.1	5.4	13
9.	12	12	12	8	11	9.1	8.1	5.6
10.	7	7	7	8	4.8	7.3	6.4	7.9
11.	5	5	5	8	5.7	4.7	5.7	6.9

. format x1-y4 %4.2g

. summarize, format

Variable	Obs	Mean	Std. Dev.	Min	Max
4					
x1	11	9	3.3	4	14
x2	11	9	3.3	4	14
x3	11	9	3.3	4	14
x4	11	9	3.3	8	19
y1	11	7.5	2	4.3	11
4					
y2	11	7.5	2	3.1	9.3
y3	11	7.5	2	5.4	13
y4	11	7.5	2	5.3	13

. regress y1 x1, cformat(%4.2g)

Source	SS	df		MS		Number of obs = 11
+						F(1, 9) = 17.99
Model	27.5100011	1	27.5	5100011		Prob > F = 0.0022
Residual	13.7626904	9	1.52	2918783		R-squared = 0.6665
+						Adj R-squared = 0.6295
Total	41.2726916	10	4.12	2726916		Root MSE = 1.2366
y1				t		[95% Conf. Interval]
x1 cons	.5 3		.12	4.24 2.67	0.002	.23 .77 .46 5.5
_0015				2.01	0.020	.40 0.0

. regress y2 x2, cformat(%4.2g)

SS	df		MS		Number of obs = 11
					F(1, 9) = 17.97
27.5000024	1	27.5	000024		Prob > F = 0.0022
13.776294	9	1.53	069933		R-squared = 0.6662
					Adj R-squared = 0.6292
41.2762964	10	4.12	762964		Root MSE = 1.2372
.5		.12	4.24	0.002	.23 .77
3		1.1	2.67	0.026	.46 5.5
	27.5000024 13.776294 41.2762964 Coef.	27.5000024 1 13.776294 9 41.2762964 10 Coef. Std. .5	27.5000024 1 27.5 13.776294 9 1.53 41.2762964 10 4.12 Coef. Std. Err. .5 .12	27.5000024 1 27.5000024 13.776294 9 1.53069933 41.2762964 10 4.12762964 Coef. Std. Err. t .5 .12 4.24	27.5000024 1 27.5000024 13.776294 9 1.53069933 41.2762964 10 4.12762964 Coef. Std. Err. t P> t .5 .12 4.24 0.002

. regress y3 x3, cformat(%4.2g)

Source	SS	df		MS		Number of obs = 11
+-						F(1, 9) = 17.97
Model	27.4700075	1	27.4	700075		Prob > F = 0.0022
Residual	13.7561905	9	1.52	846561		R-squared = 0.6663
+-						Adj R-squared = 0.6292
Total	41.2261979	10	4.12	261979		Root MSE = 1.2363
y3						[95% Conf. Interval]
x3	.5		.12	4.24		.23 .77
cons	3		1.1	2.67	0.026	.46 5.5
_00115	3		1.1	2.01	0.020	.40 0.0

. regress y4 x4, cformat(%4.2g)

Source	SS	df		MS		Number of obs = 11
+						F(1, 9) = 18.00
Model	27.4900007	1	27.4	900007		Prob > F = 0.0022
Residual	13.7424908	9	1.52	694342		R-squared = 0.6667
+						Adj R-squared = 0.6297
Total	41.2324915	10	4.12	324915		Root MSE = 1.2357
y4						[95% Conf. Interval]
x4	.5		.12	4.24	0.002	.23 .77
_cons	3		1.1	2.67	0.026	.46 5.5

Anscombe dataset plotted

CLRM assumptions revisited

1. Specification:

- $E(Y) = X\beta$ (linearity)
- No extraneous variables in X
- No omitted independent variables from X
- Parameters (β) are constant
- 2. $E(\epsilon) = 0$
- 3. Error terms:
 - $Var(\epsilon) = \sigma^2$, or homoskedastic errors
 - $E(r_{\epsilon_i,\epsilon_j}) = 0$, or no auto-correlation
- 4. X is non-stochastic
 - ▶ implies no *measurement error* in *X*
 - implies no serial correlation where a lagged value of Y would be used as an independent variable
 - no simultaneity or endogenous X variables
- 5. $\operatorname{rank}(X) = k$
- 6. $\epsilon | X \sim N(0, \sigma^2)$

Omitting a relevant independent variable

- ► In general, β^{OLS} of included coefficients will be biased, unless the excluded variable is uncorrelated with the included independent variables
- If excluded variable is *orthogonal* to included variables, then β^{OLS} unbiased but α^{OLS} (intercept) will be biased unless mean of excluded variable is zero
- Variance-covariance matrix of β^{OLS} will be smaller, meaning the MSE of β^{OLS} can go up or down (depending on bias)
- Estimate of var-covariance matrix of β^{OLS} is biased upward, because σ² is biased upward, so inferences are inaccurate

Omitting a relevant variable Z: graphical intuition

- Only blue and red areas reflect information used to estimate β in Y on X, but red also reflects variation in Z
- If Z were included, only blue area would be used to estimate β
- ► Only yellow is used to estimate σ², except when Z excluded, and then green area is also used
- ▶ If X is orthogonal to Z, then no red area and bias disappears

Including an irrelevant independent variable

- ▶ β^{OLS} and the estimator of its variance-covariance matrix will remain unbiased
- Generally the variance-covariance of β^{OLS} will become larger, and therefore β^{OLS} will be less efficient (increases MSE)
- Change in effect of s_{b1} of including irrelevant x₂:

$$s_{b_1} = rac{\hat{\sigma}}{\sqrt{\sum(X_1 - \bar{X}_1)(1 - R^2)}}$$

so adding another variance will increase R^2 (unless $r_{x_1,x_2} = 0$)

Keep in mind that "relevant" is a very substantive matter

Adding an irrelevant variable Z: graphical intuition

- ▶ Blue area refects variation in Y due entirely to X, so β unbiased
- Since blue area < (blue+red) area, $var(\hat{\beta})$ increases
- \blacktriangleright Yellow area used to estimate σ unbiased so var-cov matrix of $\hat{\beta}$ remains unbiased
- ▶ If Z is orthogonal to X then no red area and then no efficiency loss

Non-linearity

- Some non-linear forms simply cannot be used with OLS
- But others can be, if the transformation of one or more variables results in a linear function in the transformed variables
- Two types of transformations, depending on whether the whole equation or only independent variables are transformed
- Transforming only the independent variables example:

$$y = \alpha + \beta_1 x + \beta_2 x^2 + \epsilon$$

$$y = \alpha + \beta_1 x + \beta_2 z + \epsilon$$

where a new variable $z = x^2$ is created from squaring x

The equation with z is linear in the parameters but not in the variables

Non-linearity

- Transformating the entire equation means applying a transformation to both sides, not just the independent variables
- Example: the Cobb-Douglas production function:

$$Y = AK^{\alpha}L^{\gamma}\epsilon$$

$$\ln Y = \ln A + \alpha \ln K + \gamma \ln L + \ln \epsilon$$

$$Y^{*} = A^{*} + \alpha K^{*} + \gamma L^{*} + \epsilon^{*}$$

is now linear in the transformed variables Y^* , K^* and L^* .

Functional forms for additional non-linear transformations

log-linear as with the Cobb-Douglas production function example

semi-log has two forms:

• $Y = \alpha + \beta \ln X$ (where β is ΔY due to $\% \Delta X$) • $\ln Y = \alpha + \beta X$ (where β is $\% \Delta Y$ due to ΔX)

inverse or reciprocal: $Y = \alpha + \beta(1/X)$

polynomial $Y = \alpha + \beta X + \gamma X^2$

logit $y = \frac{e^{\alpha + \beta X}}{1 + e^{\alpha + \beta X}}$ constrains y to lie in [0, 1]. Estimation is done by transforming y into log-odds ratio $\ln[y/(1-y)] = \alpha + \beta x$

Nonlinear functions of explanatory variables

- A linear regression model can also include explanatory variables which are actually nonlinear transformations of initial explanatory variables
- This means that their association with the response variable does not need to be described by a straight line
- A common example are *polynomial* regression models, in particular the quadratic model

$$\mathsf{E}(Y) = \alpha + \beta_1 X + \beta_2 X^2$$

- which can also include other explanatory variables, here omitted
- This can describe various kinds of nonlinear relationships (see next page)

Nonlinear functions of explanatory variables

Example of a quadratic model

- From HIE data, for blood pressure at exit, given initial blood pressure and
 - respondent's weight: only a linear effect of weight, or
 - both weight and weight²: a nonlinear (quadratic) effect of weight
- ► The coefficient of weight² is significant at the 5% level (P = 0.023), so the quadratic model is preferred
- Nonlinear effects are easiest to interpret using fitted values: see the plot below

Example of a quadratic model

Response variable: diastolic blood pressure at exit						
		Effect	of weight			
Variable	Linear Quadratic					
(Constant)	27.36		18.06			
Initial blood pressure	0.520	(< 0.001)	0.518	(< 0.001)		
Weight	0.174	(< 0.001)	0.435	(< 0.001)		
Weight ²		n naranthaca	-0.0017	(0.023)		

(*P*-values in parentheses)

Example of a quadratic model

(Initial blood pressure fixed at 75.)

Logarithms of explanatory variables

- Another common nonlinear transformation of explanatory variables is to use logarithms of them
 - In particular, often used for variables with very skewed distributions
- Leads to linear models of the form

$$\mathsf{E}(Y) = \alpha + \beta \log(X)$$

(usually including other explanatory variables as well)

- The coefficient β of log(X) is interpreted in terms of proportional changes in X:
 - β is the expected change in Y when X is multiplied by 2.72, i.e. increases by 172%
 - ▶ 0.095β is the expected change in Y when X is multiplied by 1.1, i.e. increases by 10%

Example from HIE data

- Response variable: diastolic blood pressure at exit
- Explanatory variables:
 - Initial blood pressure, age, sex, free health care
 - ▶ Log of (1+) annual family income
- ► The estimated coefficient of log-income is -1.298
 - ► Thus the estimated effect of a 10%-increase in family income is a 0.095 × 1.298 = 0.123-point decrease in expected blood pressure, controlling for the other four explanatory variables

Example from HIE data

Variable	Coefficient	<i>P</i> -value
(Constant)	43.99	
Initial blood pressure	0.485	(< 0.001)
Age	0.268	(< 0.001)
Sex: male	4.097	(< 0.001)
Free health care	-1.610	(0.010)
Log of family income	-1.298	(0.007)

Changing parameter values

- No real OLS solutions to this problem in the manner of previous solutions (through transformation)
- For simple "switching regimes" it is possible to divide a dataset into discrete sections, and regress using dummy variables
- A test is available for this, known as the Chow test
- For more complicated and more general models, we must use maximum-likelihood or (even better) Bayesian models
- Example:

 $y = \beta_1 + \beta_2 x + \epsilon$ where : $\beta_2 = \alpha_1 + \alpha_2 z + \nu$ combine to get : $y = \beta_1 + \alpha_1 x + \alpha_2 (xz) + (\epsilon + x\nu)$

- There is an interaction between two explanatory variables, if the effect of (either) one of them on the response variable depends on at which value the other one is controlled
- Included in the model by using products of the two explanatory variables as additional explanatory variables in the model
- Example: data for the 50 United States, average SAT score of students (Y) given school expenditure per student (X) and % of students taking the SAT in three groups (low, middle and high)
 - ► The %-variable included as two dummy variables, say D_M for middle and D_L for low

A model without interactions:

$$\mathsf{E}(Y) = \alpha + \beta_1 D_L + \beta_2 D_M + \beta_3 X$$

- Here the partial effect of expenditure is β₃, same for all values of the %-variable
- Add now the products $(D_L X)$ and $(D_M X)$, to get the model

 $\mathsf{E}(Y) = \alpha + \beta_1 D_L + \beta_2 D_M + \beta_3 X + \beta_4 (D_L X) + \beta_5 (D_M X)$

- This model states that there is an interaction between school expenditure and the %-variable
 - Why?

Consider the effect of X at different values of the dummy variables:

$$\begin{split} \mathsf{E}(Y) \\ &= \alpha + \beta_1 D_L + \beta_2 D_M + \beta_3 X + \beta_4 (D_L X) + \beta_5 (D_M X) \\ &= \alpha + \beta_3 X & \text{For high-\% states} \\ &= (\alpha + \beta_2) + (\beta_3 + \beta_5) X & \text{For mid-\% states} \\ &= (\alpha + \beta_1) + (\beta_3 + \beta_4) X & \text{For low-\% states} \end{split}$$

In other words, the coefficient of X depends on the value at which D_L and D_M are fixed

The estimated coefficients in this example are

$$\begin{split} \mathsf{E}(Y) &= 847.9 + 181.3 D_L + 137.8 D_M + 6.3 X \\ &- 3.2 (D_L X) - 11.7 (D_M X) \\ &= 847.9 + 6.3 X & \text{for high-\% states} \\ &= 1029.2 + 3.1 X & \text{for low-\% states} \\ &= 985.7 - 5.4 X & \text{for mid-\% states} \end{split}$$

Model with interaction

...and without

Testing for interactions

VS

- A standard test of whether the coefficient of the product variable (or variables) is zero is a test of whether the interaction is needed in the model
 - t-test or (if more than one product variable) F-test
- In the example, we use an F-test, comparing

Full model
$$\mathsf{E}(Y) = \alpha + \beta_1 D_L + \beta_2 D_M + \beta_3 X$$
 $+\beta_4(D_L X) + \beta_5(D_M X)$. Restricted m. $\mathsf{E}(Y) = \alpha + \beta_1 D_L + \beta_2 D_M + \beta_3 X$

i.e. a test of H_0 : $\beta_4 = \beta_5 = 0$

Here F = 0.61 and P = 0.55, so the interaction is not in fact significant

Interactions between categorical variables

- In the previous example, the interaction was between a continuous variable and a categorical variable
- In other cases too, interactions are included as products of variables
 - ► For an example of an interaction between two continuous variables, see S. 4.6.2
- An example of interaction between two categorical (here binary) explanatory variables, from HIE data:
 - Response variable: blood pressure at exit
 - Two binary explanatory variables:
 - Being on free health care vs. some other plan
 - Income in the lowest 20% in the data vs. not
 - Other control variables: initial blood pressure, age and sex

Interactions between categorical variables

Variable	Coefficient
Initial blood pressure	0.483
Age	0.260
Sex: Male	3.981
Low income (lowest 20%)	2.662
Free health care	-1.299
Income×Insurance plan	-1.262
(Constant)	31.83

Interactions between categorical variables

Which coefficients involving income and insurance plan apply to different combinations of these variables:

Low income		
No	Yes	
0	2.662	
-1.299	0.101	
	No 0	

(not showing the other coefficients)

where 0.101=2.662-1.299-1.262

- In other words,
 - effect of low income on blood pressure is smaller for respondents on free care than on other plans
 - effect of free care on blood pressure is bigger for low-income respondents than for high-income ones
- (Again, the interaction is not actually significant (P = 0.42) here, so this just illustrates the general idea)