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Stata output resvisited

. reg votes1st spend_total incumb minister spendXinc

Source | SS df MS Number of obs = 462

-------------+------------------------------ F( 4, 457) = 229.05

Model | 2.9549e+09 4 738728297 Prob > F = 0.0000

Residual | 1.4739e+09 457 3225201.58 R-squared = 0.6672

-------------+------------------------------ Adj R-squared = 0.6643

Total | 4.4288e+09 461 9607007.17 Root MSE = 1795.9

------------------------------------------------------------------------------

votes1st | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

spend_total | .2033637 .0114807 17.71 0.000 .1808021 .2259252

incumb | 5150.758 536.3686 9.60 0.000 4096.704 6204.813

minister | 1260.001 474.9661 2.65 0.008 326.613 2193.39

spendXinc | -.1490399 .0274584 -5.43 0.000 -.2030003 -.0950794

_cons | 469.3744 161.5464 2.91 0.004 151.9086 786.8402

------------------------------------------------------------------------------
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R2

I R2

R2 =
SSM

TSS
(1)

=

∑
(ŷi − ¯̂y)2∑
(yi − ȳ)2

(2)

=
2.9549e + 09

4.4288e + 09
(3)

= 0.667201 (4)

I Adjusted R2

R2
adj = 1− (1− R2)

n − 1

n − k − 1
(5)

= 1− (1− 0.6672)
462− 1

462− 4− 1
(6)

= 0.6642871 (7)
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”Root MSE” (and F )

I Root MSE = estimate of σ

σ̂ =
√

SSE/dfresid (8)

=
√

(1.4739e + 09)/457 (9)

=
√

3225201.58 (10)

= 1795.885 (11)

I F -test
This is the test of the null hypothesis that the joint effect of
all independent variables is zero — more on this shortly
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How to compute R2 and σ̂ from this output?
Valid cases: 4274 Dependent variable: disprls

Missing cases: 0 Deletion method: None

Total SS: 2094312.971 Degrees of freedom: 4251

R-squared: 0.887 Rbar-squared: 0.886

Residual SS: 237366.238 Std error of est: 7.472

F(22,4251): 1511.642 Probability of F: 0.000

Standard Prob Standardized Cor with

Variable Estimate Error t-value >|t| Estimate Dep Var

-------------------------------------------------------------------------------

CONSTANT 50.437041 0.164518 306.573980 0.000 --- ---

HSL*m -8.501692 2.525842 -3.365885 0.001 -0.082936 -0.215230

HSL -34.443131 2.579062 -13.354906 0.000 -0.329397 -0.216392

SL*m -6.526475 2.525842 -2.583881 0.010 -0.063667 -0.223110

SL -37.302552 2.579062 -14.463611 0.000 -0.356743 -0.225317

MSL*m -7.828347 2.525842 -3.099302 0.002 -0.076367 -0.217458

MSL -35.371193 2.579062 -13.714750 0.000 -0.338273 -0.218966

dH*m -8.292628 2.525842 -3.283115 0.001 -0.080896 -0.207012

dH -33.823319 2.579062 -13.114581 0.000 -0.323470 -0.208080

LRH*m -6.953863 2.525842 -2.753087 0.006 -0.067836 -0.224528

LRH -37.002049 2.579062 -14.347095 0.000 -0.353869 -0.226579

LRDr*m -7.023068 2.525842 -2.780486 0.005 -0.068511 -0.222815

LRDr -36.755473 2.579062 -14.251488 0.000 -0.351511 -0.224798

LRI*m -7.679571 2.525842 -3.040401 0.002 -0.074916 -0.217981

LRI -35.579349 2.579062 -13.795460 0.000 -0.340263 -0.219566

ImpHA*m -10.721835 2.525842 -4.244856 0.000 -0.104594 -0.157791

ImpHA -26.278325 2.579062 -10.189101 0.000 -0.251313 -0.156677

EqP*m -21.029154 2.525842 -8.325603 0.000 -0.205144 -0.147518

EqP -14.500895 2.579062 -5.622546 0.000 -0.138679 -0.141654

Dan*m -7.355209 2.525842 -2.911983 0.004 -0.071752 -0.220301

Dan -36.153527 2.579062 -14.018091 0.000 -0.345755 -0.222081

Ad*m -20.961184 2.525842 -8.298693 0.000 -0.204481 -0.145850

Ad -14.401702 2.579062 -5.584085 0.000 -0.137731 -0.139978
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OLS computation of “best fitting line”

I This is incredibly powerful:

Y = Xβ + ε

X ′Y = X ′Xβ + X ′ε

X ′Y = X ′Xβ + 0

(X ′X )−1X ′Y = β + 0

β = (X ′X )−1X ′Y

I But it does not tell us how uncertain is our estimate of β in
any probabalistic, comparative sense
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Distributional assumptions

I Distributions are used to assess uncertainty

I Many standard parametric tests are associated with
interpreting uncertainty of regression results, including those
from the CLRM/OLS

I t distributions
I z distributions
I F distributions
I χ2 distributions

I In small samples, the applicability of these distributions
depends on the errors being distributed normally

I In larger samples, the asymptotic properties of these
distributions means the results hold even when errors are not
distributed normally
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Distribution of β̂

I β̂ ∼ N(β, (X ′X )−1σ2) in repeated samples

I The variances of β̂ will be the diagonal elements from the
variance-covariance matrix of β̂

I Problem: variance covariance matrix is not usually known,
because σ2 is not usually known (and
Var(β) = σ2/

∑
(xi − x̄)2)

I But by using s2 as an estimate of σ2, we can use the square
root of the kth diagonal element of the variance-covariance
matrix to estimate the standard error of β̂k , which will be
t-distributed
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t-tests for individual β̂

I As just stated, the sampling distribution of β̂ will be
t-distributed, with n − k − 1 degrees of freedom

I The empirical t-value will be the coefficient estimate divided
by its standard error

I This yields a t-value that is compared with the critical value
for t with n − k − 1 degrees of freedom

I Example in Stata:
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OLS Example in Stata

. reg votes1st spend_total incumb minister spendXinc

Source | SS df MS Number of obs = 462

-------------+------------------------------ F( 4, 457) = 229.05

Model | 2.9549e+09 4 738728297 Prob > F = 0.0000

Residual | 1.4739e+09 457 3225201.58 R-squared = 0.6672

-------------+------------------------------ Adj R-squared = 0.6643

Total | 4.4288e+09 461 9607007.17 Root MSE = 1795.9

------------------------------------------------------------------------------

votes1st | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

spend_total | .2033637 .0114807 17.71 0.000 .1808021 .2259252

incumb | 5150.758 536.3686 9.60 0.000 4096.704 6204.813

minister | 1260.001 474.9661 2.65 0.008 326.613 2193.39

spendXinc | -.1490399 .0274584 -5.43 0.000 -.2030003 -.0950794

_cons | 469.3744 161.5464 2.91 0.004 151.9086 786.8402

------------------------------------------------------------------------------
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Interpretation of regression coefficients

I Each coefficient in a multiple regression model describes the
association between an explanatory variable and the response,
controlling for the other explanatory variables

I These are known as partial associations

I For example, consider the coefficient βk of Xk :

µ = (α + β1X1 + · · ·+ βk−1Xk−1) + βkXk = (Others) + βkXk

I Here the “(Others)” bit depends on the other explanatory
variables X1, . . . ,Xk−1 but not on Xk

I If now Xk increases by 1 unit and the other explanatory
variables remain unchanged, µ changes by βk units
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Interpretation of regression coefficients

I In general,
I The coefficient βj of an explanatory variable Xj shows the

change in the expected value of Y when Xj increases by 1 unit
while all the other explanatory variables are held constant

I ...or, in other words, the expected change in Y when Xj

increases by 1 unit, “controlling for” the other explanatory
variables

I For example, in the model shown below, the (estimated)
coefficient of education is β̂education = 0.990

I Thus every one-year increase in education completed increases
the expected General Health Index by 0.99 points, controlling
for age and family income
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A fitted model for GHI

Response variable: General Health Index

Explanatory

variable β̂ s.e. t P-value 95% CI

Constant 59.42
Age -0.128 0.032 -4.029 < 0.001 (-0.190; -0.066)
Education 0.990 0.143 6.906 < 0.001 (0.709; 1.272)
Fam. Income 0.275 0.063 4.345 < 0.001 (0.151; 0.398)

σ̂ = 14.6; R2 = 0.061; n = 1699; df = 1695
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The uninteresting parameters

I The remaining two parameters of the model are necessary but
uninteresting for substantive interpretation:

I The constant term α is the expected value of Y when all
explanatory variables are 0

I The residual standard deviation σ is the standard deviation of
Y given (any) single set of values for X1, . . . ,Xk

I i.e. the standard deviation “around the fitted regression
surface” at any given point of it
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Estimation of the parameters

I The fitted values of Y are

Ŷi = α̂ + β̂1X1i + β̂2X2i + · · ·+ β̂kXki

for all observations i = 1, . . . , n in the sample

I We would like to select the values of the estimated
coefficients α̂, β̂1, . . . , β̂k so that the fitted values are a good
match to observed values Y1, . . . ,Yn

I This is done by finding estimates which minimize the error
sum of squares

SSE =
∑

(Yi − Ŷi )
2

I These are the (ordinary) least squares (OLS) estimates of the
coefficients
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Estimation of the parameters

X

Y

Yi − Ŷi

Yi − Ŷi

Ȳ

Ŷi − ȲYi − Ȳ

Ŷ = α̂ + β̂X
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Estimation of the parameters

Reminder: For the simple (one-X ) linear model, the fitted values
define a straight line:
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Estimation of the parameters

I Least squares estimates β̂j of the coefficients are easily
calculated by a computer

I Also produced are estimated standard errors ŝe(β̂j) of the
estimated coefficients

I Also produced is an estimate σ̂ of the residual standard
deviation
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Fitted values for interpretation

I A fitted model can be interpreted using the regression
coefficients β̂j as well as fitted (predicted) values

Ŷ = α̂ + β̂1X1 + β̂2X2 + · · ·+ β̂kXk

for Y , calculated at some representative values of the
explanatory variables

I Methods of presentation:
I Plots of fitted values given a continuous explanatory variable,

fixing others at some values
I Tables of fitted values, given an array of values for the

explanatory variables

I See examples for GHI below, given age, education and income
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Fitted values of GHI given income

Family income ($1000)
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Fitted values of GHI

Education
0 12 18

Income 0 10 32 0 10 32 0 10 32

Age 16 57.4 60.1 66.2 69.2 72.0 78.0 — — —

35 54.9 57.7 63.7 66.8 69.6 75.6 72.8 75.5 81.6
62 51.5 54.2 60.3 63.4 66.1 72.2 69.3 72.1 78.1
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Inference for a single regression coefficient

I Consider the following null hypothesis for the coefficient of an
explanatory variable Xj :

H0 : βj = 0

against the alternative hypothesis

Ha : βj 6= 0,

both with no claims about the coefficients of the other
explanatory variables

I In other words,
H0 : There is no partial association between Xj and Y ,

controlling for the other explanatory variables
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Inference for a single regression coefficient

I This is tested using the t-test statistic

t =
β̂j

ŝe(β̂j)

I When H0 is true, the sampling distribution of t is a t
distribution with n − (k + 1) degrees of freedom (k is the
number of explanatory variables)

I The P-value is calculated just as before

I If the null hypothesis is not rejected, the implication is that Xj

may be dropped from the model (while keeping the other
explanatory variables in the model)
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Inference for a single regression coefficient

I For example, in the model for GHI given age, education and
income, the coefficient of education is β̂education = 0.990 and
ŝe(β̂education) = 0.143, so

t =
0.990

0.143
= 6.91

for which P < 0.001

I Thus there is strong evidence of a partial association between
education and GHI, even controlling for age and income
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Inference for a single regression coefficient

I Similarly, P < 0.001 for tests of the effects of both age and
income, so both of these have a partial effect as well

I If, however, we add work experience to the model, the test of
its coefficient has P = 0.563

I Length of work experience has no partial effect on GHI, once
we control for age, education and income, so it does not need
to be included in the model
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Inference for a single regression coefficient
Model

Variable (1) (2) (3) (4) (5)

Age −0.138 −0.089 −0.184 −0.128 −0.142

(< 0.001) (0.004) (< 0.001) (< 0.001) (< 0.001)

Education — 1.157 — 0.990 0.981

(< 0.001) (< 0.001) (< 0.001)

Income — — 0.391 0.275 0.277

(< 0.001) (< 0.001) (< 0.001)

Experience — — — — 0.002

(0.563)

(Constant) 74.777 58.801 72.383 59.417 59.723

R2 0.012 0.051 0.035 0.061 0.061

(P-values in parentheses)

August 15, 2012 Lecture 3 Multiple linear regression 1 26 / 58



Confidence intervals

I A confidence interval for a single regression coefficient βj is

β̂j ± t
(n−(k+1))
α/2 ŝe(β̂j)

where t
(n−(k+1))
α/2 is the multiplier from the tn−(k+1)

distribution for the required confidence level
I or approximately from the standard normal distribution, e.g.

1.96 for 95% intervals

I For example, 95% confidence interval for the coefficient of
education in the model discussed above is

0.990± 1.96× 0.143 = (0.709; 1.272)
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An example

I Data from the Rand Health Insurance Experiment (HIE): see
S. 4.1 of the coursepack

I n = 1699 respondents to a survey at the start of the study

I Response variable Y : Respondent’s diastolic blood pressure
at the end of the study

I Various explanatory variables considered today for illustration
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Dummy variables

I Categorical explanatory variables are included in regression
models as dummy variables (indicator variables)

I Variables with only two values, 0 and 1
I 1 if a subject’s value of a categorical variable is in a particular

category, 0 if not

I For example, a person’s sex may be entered as the dummy
variable for men:

X =

{
1 if the person is male

0 otherwise

or as the dummy for women (but not both)
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Coefficients of dummy variables

I Consider a model with only dummy for men as explanatory
variable:

For men: E(Y ) = α + βX = α + β × 1 = α + β

For women: E(Y ) = α + βX = α + β × 0 = α

Difference: β

I In short, the coefficient of the dummy variable for men is the
expected difference in Y between men and women
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Coefficients of dummy variables

I This is the two-group model considered in lecture 2, and β is
the group (sex) difference in expected Y

I Least squares estimates are here

α̂ = Ȳwomen

β̂ = Ȳmen − Ȳwomen

I The t-test for the null hypothesis that β = 0 and confidence
interval for β are the same as the inference for group
difference of means in lecture 2

I This is the simplest example of an Analysis of Variance
(ANOVA) model: linear regression models with only
categorical explanatory variables
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Coefficients of dummy variables

I More generally, dummy variables may be included in multiple
linear models together with other (continuous or dummy)
explanatory variables

I In general, the coefficients of dummy variables are interpreted
as expected differences in Y between units at different levels
of categorical variables, controlling for other variables in the
model

I A t-test for the hypothesis that such a coefficient is 0 is a test
of no such difference
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Example from HIE data

I Models for diastolic blood pressure at exit (Y ), given
I Control variables: initial blood pressure, age and sex (as

dummy for men)
I Dummy variable for free health care (0 for all other insurance

plans)

I The coefficient of the free-care dummy is -1.544, with
P = 0.013

I Thus the expected blood pressure at exit is 1.544 points lower
for participants on free care than for those on some other plan,
controlling for initial blood pressure, age and sex

I This difference is statistically significant, at the 5% level
I The 95% confidence interval for this difference is (-2.76; -0.33)
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Example from HIE data

Response variable: Diastolic blood pressure at exit

Explanatory

variable β̂ s.e. t P-value

Constant 31.98
Initial BB 0.249 0.027 9.10 < 0.001
Age -0.186 0.026 -7.25 < 0.001
Sex: male 3.938 0.977 4.03 < 0.001
Free health care -1.544 0.621 -2.49 0.013
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Variables with more categories

I Dummy variables are also used for explanatory variables with
more than two categories

I e.g. smoking status: never smoked/ex-smoker/current smoker

I Dummy variables for all but one of the categories are included
in the model

I The category without a dummy is the reference (baseline)
category

I The coefficient of the dummy of a category is the expected
difference in Y between that category and the baseline

I Differences between non-baseline categories are given by
differences of their coefficients

I The choice of the baseline is arbitrary: the model is the same,
whatever the choice
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Variables with more categories

Response variable: blood pressure at exit

Model
Variable (1) (2) (3)

Past blood pressure 0.573 0.573 0.573

Sex

Female 0 -2.033 0
Male 2.033 0 2.033

Smoking status

Never smoked 0 1.239 1.382
Ex-smoker -1.239 0 0.143
Current smoker -1.382 -0.143 0

(Constant) 35.383 36.177 34.001
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Example from HIE data

I Again, models for diastolic blood pressure at exit (Y ), with
initial blood pressure, age and sex as control variables

I Insurance plan now entered as a five-category variable, with
95% coinsurance plan as the reference level

I Each t-test of the coefficient of the dummy for a particular
insurance plan tests the hypothesis that there is no difference
in expected blood pressure between that plan and the
reference plan, controlling for the other variables

I The only significant difference is for the free care plan, with
coefficient -2.009: This is the difference in expected blood
pressure between free care and 95% plans, controlling for
initial BB, age and sex
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Example from HIE data

Response variable: Diastolic blood pressure at exit

Explanatory

variable β̂ s.e. t P-value

(Other coefficients not shown)

Insurance plan:

95% coinsurance 0 — — —
50% coinsurance 0.091 1.382 0.07 0.947
25% coinsurance -0.772 0.979 -0.79 0.430
Individual deductible -0.727 0.947 -0.77 0.442
Free care -2.009 0.866 -2.32 0.020
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The General F -test
I This is used to test multiple-coefficient hypotheses of the form

H0 : βg+1 = βg+2 = · · · = βk = 0,

against the alternative

Ha : at least one of βg+1, βg+2, . . . , βk is not 0

I The most common application of this is testing the
coefficients of dummy variables for different categories of a
categorical explanatory variable simultaneously

I e.g. in the example above, the coefficients of the dummies for
four insurance plans

I If this is not rejected, none of the plans differ from the
reference plan (and thus they also do not differ from each
other), i.e. insurance plan has no effect on blood pressure,
given the control variables
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The General F -test

I To carry out the F -test, first fit two models:
I The restricted model (M0), where the variables of the null

hypothesis are omitted
I The full model (Ma), where the variables of the null

hypothesis are included

I In this example,
I M0 includes initial BB, age and sex
I Ma includes initial BB, age and sex, and the four insurance

plan dummies

I Then compare the R2 values (or error sums of squares SSE)
between the two models
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The General F -test

I The F -test statistic is

F =
(SSE0 − SSEa)/(ka − k0)

SSEa/[n − (ka + 1)]

=
(R2

a − R2
0 )/(ka − k0)

(1− R2
a )/[n − (ka + 1)]

I Large values of this are evidence against the null hypothesis
that the restricted model is correct

I In that case R2
a − R2

0 is large, i.e. the full model has a “much”
higher R2

I The sampling distribution of F is an F distribution with
ka − k0 and n − (ka + 1) degrees of freedom

I In practice, P-values obtained with a computer
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The General F -test

I In the example, n = 1045 and
I R2

a = 0.3536 and ka = 7 for the full model
I R2

0 = 0.3491 and ka = 3 for the restricted model, so

F =
(0.3536− 0.3491)/4

(1− 0.3536)/1037
= 1.80

for which P = 0.127

I Thus the null hypothesis is not rejected: no evidence of
differences between insurance plans in their effect on blood
pressure, controlling for the other three variables
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Interactions

I There is an interaction between two explanatory variables, if
the effect of (either) one of them on the response variable
depends on at which value the other one is controlled

I Included in the model by using products of the two
explanatory variables as additional explanatory variables in the
model

I Example: data for the 50 United States, average SAT score of
students (Y ) given school expenditure per student (X ) and %
of students taking the SAT in three groups (low, middle and
high)

I The %-variable included as two dummy variables, say DM for
middle and DL for low
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Interactions

I A model without interactions:

E(Y ) = α + β1DL + β2DM + β3X

I Here the partial effect of expenditure is β3, same for all values
of the %-variable

I Add now the products (DLX ) and (DMX ), to get the model

E(Y ) = α + β1DL + β2DM + β3X + β4(DLX ) + β5(DMX )

I This model states that there is an interaction between school
expenditure and the %-variable

I Why?
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Interactions

I Consider the effect of X at different values of the dummy
variables:

E(Y )

= α + β1DL + β2DM + β3X + β4(DLX ) + β5(DMX )

= α + β3X For high-% states

= (α + β2) + (β3 + β5)X For mid-% states

= (α + β1) + (β3 + β4)X For low-% states

I In other words, the coefficient of X depends on the value at
which DL and DM are fixed
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Interactions

I The estimated coefficients in this example are

E(Y ) = 847.9 + 181.3DL + 137.8DM + 6.3X

−3.2(DLX )− 11.7(DMX )

= 847.9 + 6.3X for high-% states

= 1029.2 + 3.1X for low-% states

= 985.7− 5.4X for mid-% states
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Model with interaction
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...and without

School expenditure
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Testing for interactions

I A standard test of whether the coefficient of the product
variable (or variables) is zero is a test of whether the
interaction is needed in the model

I t-test or (if more than one product variable) F -test

I In the example, we use an F -test, comparing

Full model E(Y ) = α + β1DL + β2DM + β3X

+β4(DLX ) + β5(DMX )

vs. Restricted m. E(Y ) = α + β1DL + β2DM + β3X

i.e. a test of H0 : β4 = β5 = 0

I Here F = 0.61 and P = 0.55, so the interaction is not in fact
significant
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Interactions between categorical variables

I In the previous example, the interaction was between a
continuous variable and a categorical variable

I In other cases too, interactions are included as products of
variables

I An example of interaction between two categorical (here
binary) explanatory variables, from HIE data:

I Response variable: blood pressure at exit
I Two binary explanatory variables:

I Being on free health care vs. some other plan
I Income in the lowest 20% in the data vs. not

I Other control variables: initial blood pressure, age and sex
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Interactions between categorical variables

Variable Coefficient

Initial blood pressure 0.483

Age 0.260

Sex: Male 3.981

Low income (lowest 20%) 2.662

Free health care -1.299

Income×Insurance plan -1.262

(Constant) 31.83
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Interactions between categorical variables

I Which coefficients involving income and insurance plan apply
to different combinations of these variables:

Low income
Free care No Yes

No 0 2.662

Yes -1.299 0.101
(not showing the other coefficients)

where 0.101=2.662-1.299-1.262
I In other words,

I effect of low income on blood pressure is smaller for
respondents on free care than on other plans

I effect of free care on blood pressure is bigger for low-income
respondents than for high-income ones

I (Again, the interaction is not actually significant (P = 0.42)
here, so this just illustrates the general idea)
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F -tests for all predictors

I The “default” test with most regressions is the test that all
β = 0 — in other words, nothing going on here

I Null hypothesis: H0 : β0 = . . . = βk = 0

I This is equivalent to testing a model with a set of linear
constraints where all β are set to zero

I Formula:

F =
(SST − SSE )/k

SSE/(n − k − 1)

where:
I SST and SSE are the total and error sums of squares
I n is the number of observations
I k is the number of variables (excluding constant!)
I (n − k − 1) is also the “residual degrees of freedom”
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Example of F -test for all predictors
> m1 <- lm(votes1st ~ spend_total*incumb, data=dail)

> summary(m1)

Call:

lm(formula = votes1st ~ spend_total * incumb, data = dail)

Residuals:

Min 1Q Median 3Q Max

-5574.9 -947.5 -214.0 893.8 7154.6

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 464.59553 162.59753 2.857 0.00447 **

spend_total 0.20414 0.01155 17.671 < 2e-16 ***

incumb 4493.32513 478.80828 9.384 < 2e-16 ***

spend_total:incumb -0.10689 0.02254 -4.742 2.83e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1808 on 458 degrees of freedom

(2 observations deleted due to missingness)

Multiple R-squared: 0.6621, Adjusted R-squared: 0.6599

F-statistic: 299.1 on 3 and 458 DF, p-value: < 2.2e-16

> SST <- sum((m1$model[,1] - mean(m1$model[,1]))^2)

> SSE <- sum(m1$residuals^2)

> k <- 3

> (df <- m1$df.residual)

[1] 458

> (F <- ((SST-SSE)/k) / (SSE/df))

[1] 299.1095

> 1 - pf(F, k, df)

[1] 0
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Testing just one predictor

I Null hypothesis: H0 : βj = 0

I Error statistic will be

tj =
β̂j

se(β̂j)

where tj is t-distributed with n − k − 1 degrees of freedom
(same as df.residual)

I The F statistic will be t2j
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Example of testing just one predictor
> m1c <- lm(votes1st ~ spend_total + incumb, data=dail)

> SSEc <- deviance(m1c) # the SSE

> (F2 <- (SSEc - SSE) / (SSE / df))

[1] 22.48497

> 1 - pf(F2, 1, df)

[1] 2.832798e-06

> sqrt(F2) # will be the same as the t-test for this coefficient

[1] 4.741832

> summary(m1)$coeff

Estimate Std. Error t value Pr(>|t|)

(Intercept) 464.5955332 162.59752848 2.857335 4.466694e-03

spend_total 0.2041449 0.01155236 17.671273 1.154515e-53

incumb 4493.3251289 478.80828470 9.384393 2.962201e-19

spend_total:incumb -0.1068943 0.02254283 -4.741832 2.832798e-06

> anova(m1c,m1) # a much easier way to compare 2 models

Analysis of Variance Table

Model 1: votes1st ~ spend_total + incumb

Model 2: votes1st ~ spend_total * incumb

Res.Df RSS Df Sum of Sq F Pr(>F)

1 459 1570088906

2 458 1496614393 1 73474513 22.485 2.833e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Testing multiple predictors and generalized linear
constraints

I Just because two variables are individually not significant,
does not mean that jointly the variables are not significant

I The F -test can be generalized to any set of J linear
constraints, as follows:

F =
[SSEconstrained − SSEunconstrained ]/(dfconst − dfunconst)

SSEunconstrained/dfunconstr

I Steps:

1. Run the unconstrained regression, save SSE
2. Run the constrained regression, save SSE
3. Compute F and reject if F > Fdfconst ,dfunconst

I For a single βk , this is equivalent to the t-test
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Parametric confidence intervals for β

I CIs or confidence intervals provide an alternative way to
express uncertainty for our estimates

I For a 100(1− α)% confidence region, any point that lies
within the region represents a null hypothesis that would not
be rejected at the 100α% level, while every point outside it
represents a null hypothesis that would have been rejected

I More valuable than simple hypothesis tests because it tells us
about a parameter’s plausible values

I Formula: Estimate ± Critical Value × S.E.

I For β specifically:

β̂i ± t
α/2
n−k−1σ̂

√
(X ′X )−1ii

I In practice we should consider joint confidence regions,
especially when β̂ are (highly) correlated
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