The Classical Linear Regression Model

ME104: Linear Regression Analysis Kenneth Benoit

August 14, 2012

CLRM: Basic Assumptions

1. Specification:

- Relationship between X and Y in the population is linear: $E(Y) = X\beta$
- No extraneous variables in X
- No omitted independent variables
- Parameters (β) are constant
- 2. $E(\epsilon) = 0$
- 3. Error terms:
 - $Var(\epsilon) = \sigma^2$, or homoskedastic errors
 - $E(r_{\epsilon_i,\epsilon_j}) = 0$, or no auto-correlation

CLRM: Basic Assumptions (cont.)

- 4. X is non-stochastic, meaning observations on independent variables are fixed in repeated samples
 - ▶ implies no *measurement error* in *X*
 - implies no serial correlation where a lagged value of Y would be used an independent variable
 - no simultaneity or endogenous X variables
- 5. N > k, or number of observations is greater than number of independent variables (in matrix terms: rank(X) = k), and no exact linear relationships exist in X
- 6. Normally distributed errors: $\epsilon | X \sim N(0, \sigma^2)$. Technically however this is a *convenience* rather than a strict assumption

Normally distributed errors

Ordinary Least Squares (OLS)

• Objective: minimize $\sum e_i^2 = \sum (Y_i - \hat{Y}_i)^2$, where

$$\hat{Y}_i = b_0 + b_1 X_i$$

$$\bullet \text{ error } e_i = (Y_i - \hat{Y}_i)$$

$$b = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})}$$
$$= \frac{\sum X_i Y_i}{\sum X_i^2}$$

• The intercept is:
$$b_0 = ar{Y} - b_1ar{X}$$

OLS rationale

- Formulas are very simple
- Closely related to ANOVA (sums of squares decomposition)
- Predicted Y is sample mean when Pr(Y|X) = Pr(Y)
 - In the special case where Y has no relation to X, b₁ = 0, then OLS fit is simply Ŷ = b₀
 - Why? Because $b_0 = \bar{Y} b_1 \bar{X}$, so $\hat{Y} = \bar{Y}$
 - Prediction is then sample mean when X is unrelated to Y
- Since OLS is then an extension of the sample mean, it has the same attractice properties (efficiency and lack of bias)
- Alternatives exist but OLS has generally the best properties when assumptions are met

OLS in matrix notation

• Formula for coefficient β :

$$Y = X\beta + \epsilon$$

$$X'Y = X'X\beta + X'\epsilon$$

$$X'Y = X'X\beta + 0$$

$$(X'X)^{-1}X'Y = \beta + 0$$

$$\beta = (X'X)^{-1}X'Y$$

- Formula for variance-covariance matrix: $\sigma^2(X'X)^{-1}$
 - In simple case where $y = \beta_0 + \beta_1 * x$, this gives $\sigma^2 / \sum (x_i \bar{x})^2$ for the variance of β_1
 - Note how increasing the variation in X will reduce the variance of β₁

The "hat" matrix

The hat matrix H is defined as:

$$\hat{\beta} = (X'X)^{-1}X'y$$

$$X\hat{\beta} = X(X'X)^{-1}X'y$$

$$\hat{y} = Hy$$

• $H = X(X'X)^{-1}X'$ is called the *hat-matrix*

- ► Other important quantities, such as ŷ, ∑ e_i² (RSS) can be expressed as functions of H
- Corrections for heteroskedastic errors ("robust" standard errors) involve manipulating H

Three critical quantities

- Y_i The observed value of dep. variable for unit i
- \overline{Y} The mean of the dep. variable Y
- \hat{Y}_i The value of outcome for unit *i* that is predicted from the model

Sums of squares (ANOVA)

TSS Total sum of squares $\sum (Y_i - \bar{Y})^2$

SSM Model or Regression sum of squares $\sum (\hat{Y}_i - \bar{Y})^2$

SSE Error or Residual sum of squares

$$\sum e_i^2 = \sum (\hat{Y}_i - Y_i)^2$$

The key to remember is that TSS = SSM + SSE

- Solid arrow: variation in y when X is unknown (TSS Total Sum of Squares $\sum (y_i \bar{y})^2$)
- ▶ Dashed arrow: variation in y when X is known (SSM Model Sum of Squares ∑(ŷ_i − ȳ)²)

R^2 decomposed

$$y = \hat{y} + \epsilon$$

$$Var(y) = Var(\hat{y}) + Var(\epsilon) + 2Cov(\hat{y}, \epsilon)$$

$$Var(y) = Var(\hat{y}) + Var(\epsilon) + 0$$

$$\sum(y_i - \bar{y})^2 / N = \sum(\hat{y}_i - \bar{\hat{y}})^2 / N + \sum(e_i - \hat{e})^2 / N$$

$$\sum(y_i - \bar{y})^2 = \sum(\hat{y}_i - \bar{\hat{y}})^2 + \sum(e_i - \hat{e})^2$$

$$\sum(y_i - \bar{y})^2 = \sum(\hat{y}_i - \bar{\hat{y}})^2 + \sum e_i^2$$

$$TSS = SSM + SSE$$

$$\frac{TSS}{TSS} = \frac{SSM}{TSS} + \frac{SSE}{TSS}$$

$$1 = R^2 + \text{unexplained variance}$$

- A much over-used statistic: it may not be what we are interested in at all
- Interpretation: the proportion of the variation in y that is explained linearly by the independent variables

$$R^{2} = \frac{SSM}{TSS}$$
$$= 1 - \frac{SSE}{TSS}$$
$$= 1 - \frac{\sum(y_{i} - \hat{y}_{i})^{2}}{\sum(y_{i} - \bar{y})^{2}}$$

• Alternatively, R^2 is the squared correlation coefficient between y and \hat{y}

R^2 continued

- When a model has no intercept, it is possible for R² to lie outside the interval (0, 1)
- ► R² rises with the addition of more explanatory variables. For this reason we often report "adjusted R²": 1 - (1 - R²) n-1/(n-k-1) where k is the total number of regressors in the linear model (excluding the constant)
- ► Whether R² is high or not depends a lot on the overall variance in Y
- To R^2 values from different Y samples cannot be compared

R^2 continued

х

Solid arrow: variation in y when X is unknown (SSR)
Dashed arrow: variation in y when X is known (SST)

R^2 decomposed

$$y = \hat{y} + \epsilon$$

$$Var(y) = Var(\hat{y}) + Var(e) + 2Cov(\hat{y}, e)$$

$$Var(y) = Var(\hat{y}) + Var(e) + 0$$

$$\sum(y_i - \bar{y})^2 / N = \sum(\hat{y}_i - \bar{\hat{y}})^2 / N + \sum(e_i - \hat{e})^2 / N$$

$$\sum(y_i - \bar{y})^2 = \sum(\hat{y}_i - \bar{\hat{y}})^2 + \sum(e_i - \hat{e})^2$$

$$\sum(y_i - \bar{y})^2 = \sum(\hat{y}_i - \bar{\hat{y}})^2 + \sum e_i^2$$

$$SST = SSR + SSE$$

$$SST/SST = SSR/SST + SSE/SST$$

$$1 = R^2 + \text{unexplained variance}$$

Regression "terminology"

y is the dependent variable

- referred to also (by Greene) as a regressand
- X are the independent variables
 - also known as explanatory variables
 - also known as regressors
- y is regressed on X
- The error term ϵ is sometimes called a disturbance

Some important OLS properties to understand

Applies to $y = \alpha + \beta x + \epsilon$

- If β = 0 and the only regressor is the intercept, then this is the same as regressing y on a column of ones, and hence α = ȳ −− the mean of the observations
- ▶ If $\alpha = 0$ so that there is no intercept and one explanatory variable x, then $\beta = \frac{\sum xy}{\sum x^2}$
- If there is an intercept and one explanatory variable, then

$$\beta = \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum (x_{i} - \bar{x})^{2}}$$
$$= \frac{\sum_{i} (x_{i} - \bar{x})y_{i}}{\sum (x_{i} - \bar{x})^{2}}$$

Some important OLS properties (cont.)

- ▶ If the observations are expressed as deviations from their means, $y* = y \bar{y}$ and $x^* = x \bar{x}$, then $\beta = \sum x^* y^* / \sum x^{*2}$
- ► The intercept can be estimated as ȳ βx̄. This implies that the intercept is estimated by the value that causes the sum of the OLS residuals to equal zero.
- The mean of the ŷ values equals the mean y values together with previous properties, implies that the OLS regression line passes through the overall mean of the data points

OLS in Stata

. use dail2002 (Ireland 2002 Dail Election - Candidate Spending Data)

```
. gen spendXinc = spend_total * incumb
(2 missing values generated)
```

. reg votes1st spend_total incumb minister spendXinc

Source	1	SS	df		MS		Number of obs	=	462
	+-						F(4, 457)	=	229.05
Model	1	2.9549e+09	4	738	3728297		Prob > F	=	0.0000
Residual	1	1.4739e+09	457	3225	5201.58		R-squared	=	0.6672
	+-						Adj R-squared	=	0.6643
Total	1	4.4288e+09	461	960	7007.17		Root MSE	=	1795.9
votes1st	1	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
	+-				47 74		4000004		
spena_totai		.2033637	.0114	807	1/./1	0.000	.1808021	•	2259252
incumb		5150.758	536.3	686	9.60	0.000	4096.704	6	204.813
minister	1	1260.001	474.9	661	2.65	0.008	326.613		2193.39
spendXinc	1	1490399	.0274	584	-5.43	0.000	2030003		0950794
_cons	L	469.3744	161.5	6464	2.91	0.004	151.9086	7	86.8402

OLS in R

```
> dail <- read.dta("dail2002.dta")</pre>
> mdl <- lm(votes1st ~ spend_total*incumb + minister, data=dail)</pre>
> summary(mdl)
Call:
lm(formula = votes1st ~ spend_total * incumb + minister, data = dail)
Residuals:
   Min
            10 Median 30
                                  Max
-5555.8 -979.2 -262.4 877.2 6816.5
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                  469.37438 161.54635 2.906 0.00384 **
spend_total
                     0.20336 0.01148 17.713 < 2e-16 ***
incumb
                  5150.75818 536.36856 9.603 < 2e-16 ***
minister
                  1260 00137 474 96610 2 653 0 00826 **
spend total:incumb -0.14904 0.02746 -5.428 9.28e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1796 on 457 degrees of freedom
  (2 observations deleted due to missingness)
Multiple R-squared: 0.6672, Adjusted R-squared: 0.6643
F-statistic: 229 on 4 and 457 DF, p-value: < 2.2e-16
```

Examining the sums of squares

```
> yhat <- mdl$fitted.values
                               # uses the lm object mdl from previous
> vbar <- mean(mdl$model[.1])</pre>
> y <- mdl$model[,1]</pre>
                               # can't use dail$votes1st since diff N
> SST <- sum((v-ybar)^2)</pre>
> SSR <- sum((yhat-ybar)^2)
> SSE <- sum((yhat-y)^2)
> SSE
[1] 1473917120
> sum(mdl$residuals^2)
[1] 1473917120
> (r2 <- SSR/SST)
[1] 0.6671995
> (adjr2 <- (1 - (1-r2)*(462-1)/(462-4-1)))
[1] 0.6642865
> summary(mdl)$r.squared  # note the call to summary()
[1] 0.6671995
> SSE/457
[1] 3225202
> sqrt(SSE/457)
[1] 1795.885
> summary(mdl)$sigma
[1] 1795.885
```