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CLRM: Basic Assumptions

1. Specification:
I Relationship between X and Y in the population is linear:

E(Y ) = Xβ
I No extraneous variables in X
I No omitted independent variables
I Parameters (β) are constant

2. E(ε) = 0

3. Error terms:
I Var(ε) = σ2, or homoskedastic errors
I E(rεi ,εj ) = 0, or no auto-correlation



CLRM: Basic Assumptions (cont.)

4. X is non-stochastic, meaning observations on independent
variables are fixed in repeated samples

I implies no measurement error in X
I implies no serial correlation where a lagged value of Y would

be used an independent variable
I no simultaneity or endogenous X variables

5. N > k , or number of observations is greater than number of
independent variables (in matrix terms: rank(X ) = k), and no
exact linear relationships exist in X

6. Normally distributed errors: ε|X ∼ N(0, σ2). Technically
however this is a convenience rather than a strict assumption



Normally distributed errors



Ordinary Least Squares (OLS)

I Objective: minimize
∑

e2i =
∑

(Yi − Ŷi )
2, where

I Ŷi = b0 + b1Xi

I error ei = (Yi − Ŷi )

b =

∑
(Xi − X̄ )(Yi − Ȳ )∑

(Xi − X̄ )

=

∑
XiYi∑
X 2
i

I The intercept is: b0 = Ȳ − b1X̄



OLS rationale

I Formulas are very simple

I Closely related to ANOVA (sums of squares decomposition)

I Predicted Y is sample mean when Pr(Y |X ) =Pr(Y )
I In the special case where Y has no relation to X , b1 = 0, then

OLS fit is simply Ŷ = b0
I Why? Because b0 = Ȳ − b1X̄ , so Ŷ = Ȳ
I Prediction is then sample mean when X is unrelated to Y

I Since OLS is then an extension of the sample mean, it has the
same attractice properties (efficiency and lack of bias)

I Alternatives exist but OLS has generally the best properties
when assumptions are met



OLS in matrix notation

I Formula for coefficient β:

Y = Xβ + ε

X ′Y = X ′Xβ + X ′ε

X ′Y = X ′Xβ + 0

(X ′X )−1X ′Y = β + 0

β = (X ′X )−1X ′Y

I Formula for variance-covariance matrix: σ2(X ′X )−1

I In simple case where y = β0 + β1 ∗ x , this gives
σ2/

∑
(xi − x̄)2 for the variance of β1

I Note how increasing the variation in X will reduce the variance
of β1



The “hat” matrix

I The hat matrix H is defined as:

β̂ = (X ′X )−1X ′y

X β̂ = X (X ′X )−1X ′y

ŷ = Hy

I H = X (X ′X )−1X ′ is called the hat-matrix

I Other important quantities, such as ŷ ,
∑

e2i (RSS) can be
expressed as functions of H

I Corrections for heteroskedastic errors (“robust” standard
errors) involve manipulating H



Three critical quantities

Yi The observed value of dep. variable for unit i

Ȳ The mean of the dep. variable Y

Ŷi The value of outcome for unit i that is predicted
from the model



Sums of squares (ANOVA)

TSS Total sum of squares
∑

(Yi − Ȳ )2

SSM Model or Regression sum of squares
∑

(Ŷi − Ȳ )2

SSE Error or Residual sum of squares∑
e2i =

∑
(Ŷi − Yi )

2

The key to remember is that TSS = SSM + SSE



R2

I Solid arrow: variation in y when X is unknown (TSS Total Sum of
Squares

∑
(yi − ȳ)2)

I Dashed arrow: variation in y when X is known (SSM Model Sum of
Squares

∑
(ŷi − ȳ)2)



R2 decomposed

y = ŷ + ε

Var(y) = Var(ŷ) + Var(ε) + 2Cov(ŷ , ε)

Var(y) = Var(ŷ) + Var(ε) + 0∑
(yi − ȳ)2/N =

∑
(ŷi − ¯̂y)2/N +

∑
(ei − ê)2/N∑

(yi − ȳ)2 =
∑

(ŷi − ¯̂y)2 +
∑

(ei − ê)2∑
(yi − ȳ)2 =

∑
(ŷi − ¯̂y)2 +

∑
e2i

TSS = SSM + SSE
TSS

TSS
=

SSM

TSS
+

SSE

TSS
1 = R2 + unexplained variance



R2

I A much over-used statistic: it may not be what we are
interested in at all

I Interpretation: the proportion of the variation in y that is
explained linearly by the independent variables

R2 =
SSM

TSS

= 1− SSE

TSS

= 1−
∑

(yi − ŷi )
2∑

(yi − ȳ)2

I Alternatively, R2 is the squared correlation coefficient between
y and ŷ



R2 continued

I When a model has no intercept, it is possible for R2 to lie
outside the interval (0, 1)

I R2 rises with the addition of more explanatory variables. For
this reason we often report “adjusted R2”: 1− (1−R2) n−1

n−k−1
where k is the total number of regressors in the linear model
(excluding the constant)

I Whether R2 is high or not depends a lot on the overall
variance in Y

I To R2 values from different Y samples cannot be compared



R2 continued

I Solid arrow: variation in y when X is unknown (SSR)

I Dashed arrow: variation in y when X is known (SST)



R2 decomposed

y = ŷ + ε

Var(y) = Var(ŷ) + Var(e) + 2Cov(ŷ , e)

Var(y) = Var(ŷ) + Var(e) + 0∑
(yi − ȳ)2/N =

∑
(ŷi − ¯̂y)2/N +

∑
(ei − ê)2/N∑

(yi − ȳ)2 =
∑

(ŷi − ¯̂y)2 +
∑

(ei − ê)2∑
(yi − ȳ)2 =

∑
(ŷi − ¯̂y)2 +

∑
e2i

SST = SSR + SSE

SST/SST = SSR/SST + SSE/SST

1 = R2 + unexplained variance



Regression “terminology”

I y is the dependent variable
I referred to also (by Greene) as a regressand

I X are the independent variables
I also known as explanatory variables
I also known as regressors

I y is regressed on X

I The error term ε is sometimes called a disturbance



Some important OLS properties to understand

Applies to y = α + βx + ε

I If β = 0 and the only regressor is the intercept, then this is
the same as regressing y on a column of ones, and hence
α = ȳ — the mean of the observations

I If α = 0 so that there is no intercept and one explanatory
variable x , then β =

∑
xy∑
x2

I If there is an intercept and one explanatory variable, then

β =

∑
i (xi − x̄)(yi − ȳ)∑

(xi − x̄)2

=

∑
i (xi − x̄)yi∑
(xi − x̄)2



Some important OLS properties (cont.)

I If the observations are expressed as deviations from their
means, y∗ = y − ȳ and x∗ = x − x̄ , then β =

∑
x∗y∗/

∑
x∗2

I The intercept can be estimated as ȳ − βx̄ . This implies that
the intercept is estimated by the value that causes the sum of
the OLS residuals to equal zero.

I The mean of the ŷ values equals the mean y values – together
with previous properties, implies that the OLS regression line
passes through the overall mean of the data points



OLS in Stata

. use dail2002

(Ireland 2002 Dail Election - Candidate Spending Data)

. gen spendXinc = spend_total * incumb

(2 missing values generated)

. reg votes1st spend_total incumb minister spendXinc

Source | SS df MS Number of obs = 462

-------------+------------------------------ F( 4, 457) = 229.05

Model | 2.9549e+09 4 738728297 Prob > F = 0.0000

Residual | 1.4739e+09 457 3225201.58 R-squared = 0.6672

-------------+------------------------------ Adj R-squared = 0.6643

Total | 4.4288e+09 461 9607007.17 Root MSE = 1795.9

------------------------------------------------------------------------------

votes1st | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

spend_total | .2033637 .0114807 17.71 0.000 .1808021 .2259252

incumb | 5150.758 536.3686 9.60 0.000 4096.704 6204.813

minister | 1260.001 474.9661 2.65 0.008 326.613 2193.39

spendXinc | -.1490399 .0274584 -5.43 0.000 -.2030003 -.0950794

_cons | 469.3744 161.5464 2.91 0.004 151.9086 786.8402

------------------------------------------------------------------------------



OLS in R

> dail <- read.dta("dail2002.dta")

> mdl <- lm(votes1st ~ spend_total*incumb + minister, data=dail)

> summary(mdl)

Call:

lm(formula = votes1st ~ spend_total * incumb + minister, data = dail)

Residuals:

Min 1Q Median 3Q Max

-5555.8 -979.2 -262.4 877.2 6816.5

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 469.37438 161.54635 2.906 0.00384 **

spend_total 0.20336 0.01148 17.713 < 2e-16 ***

incumb 5150.75818 536.36856 9.603 < 2e-16 ***

minister 1260.00137 474.96610 2.653 0.00826 **

spend_total:incumb -0.14904 0.02746 -5.428 9.28e-08 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1796 on 457 degrees of freedom

(2 observations deleted due to missingness)

Multiple R-squared: 0.6672, Adjusted R-squared: 0.6643

F-statistic: 229 on 4 and 457 DF, p-value: < 2.2e-16



Examining the sums of squares

> yhat <- mdl$fitted.values # uses the lm object mdl from previous

> ybar <- mean(mdl$model[,1])

> y <- mdl$model[,1] # can’t use dail$votes1st since diff N

> SST <- sum((y-ybar)^2)

> SSR <- sum((yhat-ybar)^2)

> SSE <- sum((yhat-y)^2)

> SSE

[1] 1473917120

> sum(mdl$residuals^2)

[1] 1473917120

> (r2 <- SSR/SST)

[1] 0.6671995

> (adjr2 <- (1 - (1-r2)*(462-1)/(462-4-1)))

[1] 0.6642865

> summary(mdl)$r.squared # note the call to summary()

[1] 0.6671995

> SSE/457

[1] 3225202

> sqrt(SSE/457)

[1] 1795.885

> summary(mdl)$sigma

[1] 1795.885


