The Classical Linear Regression Model

ME104: Linear Regression Analysis
Kenneth Benoit

August 14, 2012



CLRM: Basic Assumptions

1. Specification:

» Relationship between X and Y in the population is linear:
E(Y)=Xp

» No extraneous variables in X

» No omitted independent variables

» Parameters (3) are constant

2. E(e)=0

3. Error terms:

» Var(e) = 02, or homoskedastic errors
» E(re;,;) = 0, or no auto-correlation



CLRM: Basic Assumptions (cont.)

4. X is non-stochastic, meaning observations on independent
variables are fixed in repeated samples

» implies no measurement error in X

» implies no serial correlation where a lagged value of Y would
be used an independent variable

» no simultaneity or endogenous X variables

5. N > k, or number of observations is greater than number of
independent variables (in matrix terms: rank(X) = k), and no
exact linear relationships exist in X

6. Normally distributed errors: ¢|X ~ N(0,52). Technically
however this is a convenience rather than a strict assumption



Normally distributed errors
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Ordinary Least Squares (OLS)

» Objective: minimize Y e? = > (Y; — Yi)2, where
> V= by + b X )
> error ¢, = (Y; — Y))

. X=X Y)
> (Xi — X)
XY
XX

» The intercept is: by = Y — b X



OLS rationale

» Formulas are very simple

» Closely related to ANOVA (sums of squares decomposition)

» Predicted Y is sample mean when Pr(Y|X) =Pr(Y)
> In the special case where Y has no relation to X, b; = 0, then
OLS fit is simply ¥ = by
» Why? Because by = Y — b X, so Y=Y
» Prediction is then sample mean when X is unrelated to Y

» Since OLS is then an extension of the sample mean, it has the
same attractice properties (efficiency and lack of bias)

> Alternatives exist but OLS has generally the best properties
when assumptions are met



OLS in matrix notation

» Formula for coefficient f:

Y =

X'y

X'y
(X'X)IX'y =
8 =

XB+ €
X'XB+ X'e
X'XB+0
B+0
(X'X)7tX'y

» Formula for variance-covariance matrix: o2(X’X)™1

» In simple case where y = By + b1 * x, this gives
02/ > (x; — X)? for the variance of (3;
» Note how increasing the variation in X will reduce the variance

of ,81



The “hat” matrix

» The hat matrix H is defined as:
B — (Xlx)—lxly
Xp X(X'X)"IX'y
y = Hy

v

H = X(X'X)"1X" is called the hat-matrix

Other important quantities, such as §, > e? (RSS) can be
expressed as functions of H

v

v

Corrections for heteroskedastic errors (“robust” standard
errors) involve manipulating H



Three critical quantities

Y; The observed value of dep. variable for unit i

Y The mean of the dep. variable Y

Y: The value of outcome for unit i that is predicted
from the model



Sums of squares (ANOVA)

TSS Total sum of squares > (Y; — Y)?
SSM Model or Regression sum of squares S (V; — Y)?
SSE Error or Residual sum of squares

Yt =X(Vi- V)

The key to remember is that TSS = SSM + SSE
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> Solid arrow: variation in y when X is unknown (TSS Total Sum of
Squares > (yi — ¥)?)

> Dashed arrow: variation in y when X is known (SSM Model Sum of

Squares >_(9; — ¥)?)



R? decomposed

y = y+te
Var(y) = Var(y) + Var(e) + 2Cov(y, €)
Var(y) = Var(y)+ Var( )+0

Di—=yPIN = D G—=9P/IN+D (e —é)2/N
=92 = D G-+ (ei—28)
Z(Yi—)_/)Z = Z()A/i—y +Zei

TSS = SSM + SSE
TSS SSM  SSE

TSs TS5 | 7SS
1 = R?+ unexplained variance



» A much over-used statistic: it may not be what we are
interested in at all

> Interpretation: the proportion of the variation in y that is
explained linearly by the independent variables

SSM

TSS
SSE

- TSS
L i 9i)?
>(vi—7)?
» Alternatively, R? is the squared correlation coefficient between
y and y

R* =



R? continued

» When a model has no intercept, it is possible for R? to lie
outside the interval (0, 1)

» R? rises with the addition of more explanatory variables. For
this reason we often report “adjusted R?": 1 — (1 — R2)nf;l1
where k is the total number of regressors in the linear model

(excluding the constant)

» Whether R? is high or not depends a lot on the overall
variance in Y

» To R? values from different Y samples cannot be compared



R? continued

g2 Z0:=92
- 3)?
o _ .
b “\ . °o°é’°°°
© | o iy
o . S
> So e °
N n°@e°
o | L T "o
(] ° o s °
(\! o
ClJ -1 °
[ [ i [ I I
0.0 0.2 0.4 0.6 0.8 1.0
X

» Solid arrow: variation in y when X is unknown (SSR)

» Dashed arrow: variation in y when X is known (SST)




R? decomposed

Var(y

Var(y
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y+e

Var(y) + Var(e) + 2Cov(y, e)
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SSR + SSE
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R? + unexplained variance
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Regression “terminology”

v

y is the dependent variable
» referred to also (by Greene) as a regressand

v

X are the independent variables

» also known as explanatory variables
> also known as regressors

> y is regressed on X

The error term € is sometimes called a disturbance

v



Some important OLS properties to understand

Appliesto y = a+ Bx + ¢

» If 3 =0 and the only regressor is the intercept, then this is
the same as regressing y on a column of ones, and hence
« = y — the mean of the observations

» If & = 0 so that there is no intercept and one explanatory

variable x, then g = %fﬁ

» If there is an intercept and one explanatory variable, then

5 _ Tds-R0i-9)
> (xi —Xx)?
> ixi = X)yi

2206 =x)?




Some important OLS properties (cont.)

» If the observations are expressed as deviations from their
means, yx = y — y and x* = x — X, then 8 = >_ x*y*/ > x*2

» The intercept can be estimated as y — 8x. This implies that
the intercept is estimated by the value that causes the sum of
the OLS residuals to equal zero.

» The mean of the y values equals the mean y values — together
with previous properties, implies that the OLS regression line
passes through the overall mean of the data points



OLS in Stata

. use dail2002
(Ireland 2002 Dail Election - Candidate Spending Data)

. gen spendXinc
(2 missing values generated)

= spend_total * incumb

. reg voteslst spend_total incumb minister spendXinc

Source | Ss af MS Number of obs = 462
F( 4, 457) = 229.05

Model | 2.9549e+09 4 738728297 Prob > F = 0.0000
Residual | 1.4739e+09 457 3225201.58 R-squared = 0.6672
Adj R-squared = 0.6643

Total | 4.4288e+09 461 9607007.17 Root MSE = 1795.9
votesist | Coef.  Std. Err. t P>|t| [95% Conf. Intervall
spend_total | .2033637 .0114807 17.71 0.000 .1808021 .2259252
incumb | 5150.758 536.3686 9.60 0.000 4096.704 6204.813
minister | 1260.001 474.9661 2.65 0.008 326.613 2193.39
spendXinc | -.1490399 .0274584 -5.43 0.000 -.2030003 -.0950794
_cons | 469.3744 161.5464 2.91 0.004 151.9086 786.8402




OLSinR

> dail <- read.dta("dail2002.dta")
> mdl <- Im(voteslst ~ spend_total*incumb + minister, data=dail)
> summary (md1)

Call:
Im(formula = voteslst

spend_total * incumb + minister, data = dail)

Residuals:
Min 1Q Median 3Q Max
-565556.8 -979.2 -262.4 877.2 6816.5

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 469.37438 161.54635 2.906 0.00384 *x*
spend_total 0.20336 0.01148 17.713 < 2e-16 *x¥x*
incumb 5150.75818 536.36856 9.603 < 2e-16 ***
minister 1260.00137 474.96610 2.653 0.00826 *x

spend_total:incumb -0.14904 0.02746 -5.428 9.28e-08 *x*x
Signif. codes: 0 ‘x> 0.001 “#*’ 0.01 ‘x> 0.05 ‘.’ 0.1 ¢ > 1

Residual standard error: 1796 on 457 degrees of freedom
(2 observations deleted due to missingness)

Multiple R-squared: 0.6672, Adjusted R-squared: 0.6643

F-statistic: 229 on 4 and 457 DF, p-value: < 2.2e-16



Examining the sums of squares

yhat <- mdl$fitted.values # uses the lm object mdl from previous
ybar <- mean(mdl$modell[,1])

y <- mdl$modell[,1] # can’t use dail$voteslst since diff N
SST <- sum((y-ybar)~2)

SSR <- sum((yhat-ybar)"2)

SSE <- sum((yhat-y)~2)

> SSE

[1] 1473917120

> sum(mdl$residuals”2)

[1] 1473917120

> (r2 <- SSR/SST)

[1] 0.6671995

> (adjr2 <- (1 - (1-r2)*(462-1)/(462-4-1)))

[1] 0.6642865

> summary (mdl)$r.squared # note the call to summary()
[1] 0.6671995

> SSE/457

[1] 3225202

> sqrt (SSE/457)

[1] 1795.885

> summary (mdl) $sigma

[1] 1795.885
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